若直線y=-x+m與曲線x2+y2=4(y≥0)只有一個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):直線與圓的位置關(guān)系
專(zhuān)題:數(shù)形結(jié)合,直線與圓
分析:根據(jù)題意,畫(huà)出圖形,結(jié)合圖形解答問(wèn)題,求出實(shí)數(shù)m的取值范圍.
解答: 解:畫(huà)出圖形,如圖所示,
直線y=-x+m是斜率為-1的一組平行線,
曲線x2+y2=4(y≥0)是圓心為(0,0),半徑為2的半圓,
當(dāng)直線與半圓只有一個(gè)公共點(diǎn)時(shí),
直線l與y軸的交點(diǎn)是A,或在BC之間;
∴實(shí)數(shù)m的取值范圍是:[-2,2)∪{2
2
}

故答案為:[-2,2)∪{2
2
}
點(diǎn)評(píng):本題考查了直線與圓的應(yīng)用問(wèn)題,解題時(shí)應(yīng)用數(shù)形結(jié)合的方法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f:{1,
2
}→{1,
2
}滿足f[f(x)]>1的這樣的函數(shù)個(gè)數(shù)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列有關(guān)命題的說(shuō)法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、若p∨q真命題,則p、q均為真命題
C、命題“存在x∈R,使得x2+x+1<0”的否定是:“對(duì)任意x∈R,均有x2+x+1<0”
D、“x=y”是“sinx=siny”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(x-a)(x-b)(x-c),a、b、c為互不相等的實(shí)數(shù),則
a2
f′(a)
+
b2
f′(b)
+
c2
f′(c)
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>0,b>0),M,N是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),P是橢圓上的動(dòng)點(diǎn),且直線PM,PN的斜率分別為k1,k2,k1k2≠0,若|k1|+|k2|的最小值為
2
,則橢圓的離心率為(  )
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域 為R,當(dāng)x<0時(shí),f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y),且f(2)=4
(Ⅰ)求f(0),f(1)的值;
(Ⅱ)證明f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(1,
1
3
)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為f(n)-c,數(shù)列{bn}(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求常數(shù)c;
(2)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(3)若數(shù)列{
1
bnbn+1
}前n項(xiàng)和為T(mén)n,問(wèn)Tn
1000
2009
的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
4
+
y2
k
=1的離心率e∈(1,2),則k的取值范圍是( 。
A、(-10,0)
B、(-12,0)
C、(-3,0)
D、(-60,-12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)A(1,2)且與圓x2+y2=1相切的直線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案