下列有關(guān)命題的說法正確的是(  )
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、若p∨q真命題,則p、q均為真命題
C、命題“存在x∈R,使得x2+x+1<0”的否定是:“對任意x∈R,均有x2+x+1<0”
D、“x=y”是“sinx=siny”的充分不必要條件
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:A,寫出命題“若x2=1,則x=1”的否命題再判斷其真假即可
B,利用“或”命題的判斷規(guī)律可判斷B的正誤;
C,寫出命題“存在x∈R,使得x2+x+1<0”的否定后,即可判斷其真假;
D,利用充分必要條件的概念及應(yīng)用可從充分性與必要性兩個方面判斷D的正誤.
解答: 解:A:命題“若x2=1,則x=1”的否命題為:“若x2≠1,則x≠1”,故A錯誤;
B:若p∨q真命題,則p、q中至少有一個為真命題,故B錯誤;
C:命題“存在x∈R,使得x2+x+1<0”的否定是:“對任意x∈R,均有x2+x+1≥0”,故C錯誤;
D:x=y⇒sinx=siny,充分性成立;反之,sinx=siny,不能⇒x=y;
即“x=y”是“sinx=siny”的充分不必要條件,故D正確;
故選:D.
點評:本題考查命題的真假判斷與應(yīng)用,著重考查四種命題之間的關(guān)系與充分必要條件的概念、復(fù)合命題的真假判斷,考查轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓過點(-2,0),(2,0),(0,3),求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-x+lnx(a∈R,a≠0)
(Ⅰ)當a=2時,求在點(1,f(1))處的切線方程;
(Ⅱ)若y=f(x)在區(qū)間(2,3)內(nèi)有且只有一個極值點,求a的取值范圍;
(Ⅲ)當x∈[1,+∞),函數(shù)f(x)的圖象恒在直線y=ax的下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,公園有一塊邊長為4的等邊△ABC的邊角地,現(xiàn)修成草坪,途中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x,ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為了節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里;
(3)如果DE是參觀線路,希望它最長,DE的位置又應(yīng)在哪里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓過定點F(1,0),且與直線l:x=-1相切
(1)求動圓圓心C的軌跡方程;
(2)過點P(2,0)作直線交C的軌跡于A,B兩點,交l于點M,若點M的縱坐標為-3,求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
、
OB
不共線,且2
OM
=x
OA
+y
OB
,若
MA
=t
AB
(t∈R),則點(x,y)的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線x2=4y焦點的直線依次交拋物線與圓x2+(y-1)2=1于點A、B、C、D,則|AB|×|CD|的值是(  )
A、8B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=-x+m與曲線x2+y2=4(y≥0)只有一個公共點,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,O為BC中點,若AB=1,AC=3,<
AB
,
AC
>=60°,則|
OA
|
=
 

查看答案和解析>>

同步練習(xí)冊答案