16.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是等邊三角形,四邊形ABCD是平行四邊形,∠ADC=120°,AB=2AD.
(1)求證:平面PAD⊥平面PBD;
(2)求二面角A-PB-C的余弦值.

分析 (1)令A(yù)D=1,求出BD=$\sqrt{3}$,從而AD⊥BD,進(jìn)而BD⊥平面PAD,由此能證明平面PAD⊥平面PBD.
(2)以D為坐標(biāo)原點(diǎn),DA為x軸,DC為y軸,過D作垂直于平面ABCD的直線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-PB-C的余弦值.

解答 證明:(1)在平行四邊形ABCD中,令A(yù)D=1,
則BD=$\sqrt{A{D}^{2}+A{B}^{2}-2×AD×AB×cos60°}$=$\sqrt{3}$,
在△ABD中,AD2+BD2=AB2,∴AD⊥BD,
又平面PAD⊥平面ABCD,
∴BD⊥平面PAD,BD?平面PBD,
∴平面PAD⊥平面PBD.
解:(2)由(1)得AD⊥BD,以D為坐標(biāo)原點(diǎn),DA為x軸,DC為y軸,
過D作垂直于平面ABCD的直線為z軸,建立空間直角坐標(biāo)系,
令A(yù)D=1,則A(1,0,0),B(0,$\sqrt{3}$,0),C(-1,$\sqrt{3}$,0),P($\frac{1}{2}$,0,$\frac{\sqrt{3}}{2}$),
$\overrightarrow{AB}$=(-1,$\sqrt{3}$,0),$\overrightarrow{PB}$=(-$\frac{1}{2},\sqrt{3},-\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=(-1,0,0),
設(shè)平面PAB的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{AB}•\overrightarrow{n}=-x+\sqrt{3}y=0}\\{\overrightarrow{PB}•\overrightarrow{n}=-\frac{1}{2}x+\sqrt{3}y-\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=($\sqrt{3},1,1$),
設(shè)平面PBC的法向量$\overrightarrow{m}$=(a,b,c),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=-a=0}\\{\overrightarrow{n}•\overrightarrow{PB}=-\frac{1}{2}a+\sqrt{3}b-\frac{\sqrt{3}}{2}c=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,2),
∴cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{1+2}{\sqrt{5}•\sqrt{5}}$=$\frac{3}{5}$,
由圖形知二面角A-PB-C的平面角為鈍角,
∴二面角A-PB-C的余弦值為-$\frac{3}{5}$.

點(diǎn)評 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知圓,直線 .

(1)求證:對,直線與圓總有兩個不同交點(diǎn);

(2)若圓與直線相交于兩點(diǎn),求弦的長度最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某四面體的三視圖如圖所示,正視圖、俯視圖都是腰長為2的等腰直角三角形,側(cè)視圖是邊長為2的正方形,則此四面體的外接球的體積是( 。
A.12πB.48πC.4$\sqrt{3}$πD.32$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)Rt△ABC中,∠A=90°,AB=1,AC=$\sqrt{3}$,D是線段AC(除端點(diǎn)A、C)上一點(diǎn),將△ABD沿BD翻折至平面A′BD,使平面A′BD⊥平面ABC,當(dāng)A′在平面ABC的射影H到平面ABA′的距離最大時,AD的長度為( 。
A.$\root{4}{2}$B.$\root{3}{2}$C.$\root{4}{3}$D.$\root{3}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.20πB.19πC.16πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°
(1)求證:平面A1BD⊥平面A1AC;
(2)若BD=$\sqrt{2}$,A1D=2,求二面角A1-BD-B1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)=x2+cosx,則三個數(shù)a=f(1),b=f(log${\;}_{\frac{1}{2}}$$\frac{1}{4}$),c=f(log2$\frac{\sqrt{2}}{2}$)的大小關(guān)系為( 。
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,
①求a、b的值;
②解不等式f(x)>4.
(2)若a=1,c=0,且-1≤f(x)≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有8人參加某次競賽,分別錄取第一名至第六名各一人,則不同選法共有( 。
A.A${\;}_{8}^{6}$種B.C${\;}_{8}^{6}$種C.6C${\;}_{8}^{1}$種D.6C${\;}_{8}^{6}$種

查看答案和解析>>

同步練習(xí)冊答案