分析 根據(jù)函數(shù)是以5為周期的奇函數(shù),得f(2)=f(-3),結(jié)合函數(shù)為奇函數(shù),得f(-3)=-f(3)由此結(jié)合f(2)>1建立關(guān)于a的不等式,解之可得a的取值范圍.
解答 解:∵函數(shù)f(x)以5為周期,∴f(2)=f(-3),
又∵f(3)=$\frac{{a}^{2}+a+3}{a-3}$,函數(shù)是奇函數(shù)
∴f(-3)=-f(3)=-$\frac{{a}^{2}+a+3}{a-3}$,
因此,f(2)=-$\frac{{a}^{2}+a+3}{a-3}$>1,解之得0<a<3或a<-2
故答案為:(-∞,-2)∪(0,3).
點(diǎn)評(píng) 本題在已知函數(shù)為奇函數(shù)且是周期函數(shù)的情況下,解關(guān)于a的不等式,考查了函數(shù)的奇偶性和周期性,以及不等式的解法等知識(shí),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有95%以上的把握認(rèn)為“吸煙與患肺病有關(guān)” | |
B. | 有95%以上的把握認(rèn)為“吸煙與患肺病無(wú)關(guān)” | |
C. | 有99%以上的把握認(rèn)為“吸煙與患肺病有關(guān)” | |
D. | 有99%以上的把握認(rèn)為“吸煙與患肺病無(wú)關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | -4 | C. | {4} | D. | {-4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{4}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 過(guò)四面體各面的垂心分別與各面垂直的直線交點(diǎn)為四面體外接球球心 | |
B. | 過(guò)四面體各面的內(nèi)心分別與各面垂直的直線交點(diǎn)為四面體外接球球心 | |
C. | 過(guò)四面體各面的重心分別與各面垂直的直線交點(diǎn)為四面體外接球球心 | |
D. | 過(guò)四面體各面的外心分別與各面垂直的直線交點(diǎn)為四面體外接球球心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com