【題目】如圖所示,已知橢圓:()的離心率為,右準線方程是直線l:,點P為直線l上的一個動點,過點P作橢圓的兩條切線,切點分別為AB(點A在x軸上方,點B在x軸下方).
(1)求橢圓的標準方程;
(2)①求證:分別以為直徑的兩圓都恒過定點C;
②若,求直線的方程.
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,平面平面,底面為梯形,,,且,,.
(I)求證:;
(II)求二面角_____的余弦值;
從①,②,③這三個條件中任選一個,補充在上面問題中并作答.注:如果選擇多個條件分別解答,按第一個解答計分.
(III)若是棱的中點,求證:對于棱上任意一點,與都不平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為實數(shù),給出命題,;命題:函數(shù)的值域為.
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真,為假,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),為f(x)的導函數(shù).
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和的零點均在集合中,求f(x)的極小值;
(3)若,且f(x)的極大值為M,求證:M≤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點E、F分別是棱PC、PD的中點,則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結論正確的是________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠C發(fā)生爆炸出現(xiàn)毒氣泄漏,已知毒氣以圓形向外擴散,且半徑以每分鐘的速度增大. 一所學校A,位于工廠C南偏西,且與工廠相距.消防站B位于學校A的正東方向,且位于工廠C南偏東,立即以每分鐘的速度沿直線趕往工廠C救援,同時學校組織學生P從A處沿著南偏東的道路,以每分鐘的速度進行安全疏散(與爆炸的時間差忽略不計).要想在消防員趕往工廠的時間內(包括消防員到達工廠的時刻),保證學生的安全,學生撤離的速度應滿足什么要求?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的各項均為正整數(shù),Sn為其前n項和,對于n=1,2,3,…,有,其中為使為奇數(shù)的正整數(shù),當時,的最小值為__________;當時,___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;
平均車速超過的人數(shù) | 平均車速不超過的人數(shù) | 合計 | |
男性駕駛員 | |||
女性駕駛員 | |||
合計 |
(2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結果相互獨立,求的分布列和數(shù)學期望.
參考公式:
臨界值表:
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com