已知直線經(jīng)過點(diǎn).
(1)若直線的方向向量為,求直線的方程;
(2)若直線在兩坐標(biāo)軸上的截距相等,求此時(shí)直線的方程.
(1)(2)或
解析試題分析:(1)由直線的方向向量可得直線的斜率,根據(jù)點(diǎn)斜式可得直線方程。(2)注意討論截距是否為0,當(dāng)截距均為0時(shí),直線過原點(diǎn),設(shè)直線方程為,將點(diǎn)代入即可求得,當(dāng)截距不為0時(shí)可設(shè)直線為,同樣將點(diǎn)代入即可求得。
(1)由的方向向量為,得斜率為,
所以直線的方程為:(6分)
(2)當(dāng)直線在兩坐標(biāo)軸上的截距為0時(shí),直線的方程為;(9分)
當(dāng)直線在兩坐標(biāo)軸上的截距不為0時(shí),設(shè)為代入點(diǎn)得直線的方程為.
考點(diǎn):1直線的方向向量;2直線方程的點(diǎn)斜式和截距式。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點(diǎn).
(1)點(diǎn)A(5,0)到l的距離為3,求l的方程;
(2)求點(diǎn)A(5,0)到l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,原點(diǎn)為,拋物線的方程為,線段是拋物線的一條動(dòng)弦.
(1)求拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo);
(2)若,求證:直線恒過定點(diǎn);
(3)當(dāng)時(shí),設(shè)圓,若存在且僅存在兩條動(dòng)弦,滿足直線與圓相切,求半徑的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓上的點(diǎn)到橢圓右焦點(diǎn)的最大距離為,離心率,直線過點(diǎn)與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)上是否存在點(diǎn),使得當(dāng)繞轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有點(diǎn)的坐標(biāo)與的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)為B(0,4),離心率, 直線交橢圓于M,N兩點(diǎn).
(1)若直線的方程為y=x-4,求弦MN的長(zhǎng):
(2)如果BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)求經(jīng)過點(diǎn)A(3,2),B(-2,0)的直線方程。
(2)求過點(diǎn)P(-1,3),并且在兩軸上的截距相等的直線方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,射線OA,OB分別與x軸正半軸成45°和30°角,過點(diǎn)P(1,0)作直線AB分別交OA,OB于A,B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線y=x上時(shí),求直線AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com