已知橢圓的一個(gè)頂點(diǎn)為B(0,4),離心率, 直線(xiàn)交橢圓于M,N兩點(diǎn).
(1)若直線(xiàn)的方程為y=x-4,求弦MN的長(zhǎng):
(2)如果BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線(xiàn)的方程.

(1);(2).

解析試題分析:(1)由橢圓頂點(diǎn),又離心率,且,所以,從而求得橢圓方程為,聯(lián)立橢圓方程與直線(xiàn)消去,,再根據(jù)弦長(zhǎng)公式,可求得弦的長(zhǎng);(2)由題意可設(shè)線(xiàn)段的中點(diǎn)為,則根據(jù)三角形重心的性質(zhì)知,可求得的坐標(biāo)為,又設(shè)直線(xiàn)的方程為,根據(jù)中點(diǎn)公式得,又由點(diǎn)是橢圓上的點(diǎn)所以,兩式相減整理得,從而可求出直線(xiàn)的方程.
(1)由已知,且,.所以橢圓方程為.    4分
聯(lián)立,消去,.    6分
.    7分
(2)橢圓右焦點(diǎn)的坐標(biāo)為,設(shè)線(xiàn)段的中點(diǎn)為,由三角形重心的性質(zhì)知,又,,故得.所以得的坐標(biāo)為.    9分
設(shè)直線(xiàn)的方程為,則,且,兩式相減得.    11分
,故直線(xiàn)的方程為.    13分

考點(diǎn):1.橢圓方程;2.直線(xiàn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知三角形的三個(gè)頂點(diǎn)是A(4,0),B(6,6),C(0,2).
(1)求AB邊上的高所在直線(xiàn)的方程;
(2)求AC邊上的中線(xiàn)所在直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線(xiàn)經(jīng)過(guò)點(diǎn).
(1)若直線(xiàn)的方向向量為,求直線(xiàn)的方程;
(2)若直線(xiàn)在兩坐標(biāo)軸上的截距相等,求此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(-2,5),且斜率為 
(1)求直線(xiàn)l的方程;
(2)求與直線(xiàn)l切于點(diǎn)(2,2),圓心在直線(xiàn)上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線(xiàn)C上的動(dòng)點(diǎn)滿(mǎn)足到定點(diǎn)的距離與到定點(diǎn)距離之比為
(1)求曲線(xiàn)的方程;
(2)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),若,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直線(xiàn)L經(jīng)過(guò)點(diǎn),且被兩直線(xiàn)L1和 L2截得的線(xiàn)段AB中點(diǎn)恰好是點(diǎn)P,求直線(xiàn)L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求直線(xiàn)a:2x+y-4=0關(guān)于直線(xiàn)l:3x+4y-1=0對(duì)稱(chēng)的直線(xiàn)b的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)平面過(guò)坐標(biāo)原點(diǎn),是平面的一個(gè)法向量,求到平面的距離;
(2)直線(xiàn)過(guò),是直線(xiàn)的一個(gè)方向向量,求到直線(xiàn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

直線(xiàn)的斜率為      。

查看答案和解析>>

同步練習(xí)冊(cè)答案