3.已知命題P:若平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=($\overrightarrow$•$\overrightarrow{c}$)•$\overrightarrow{a}$,則向量$\overrightarrow{a}$與$\overrightarrow{c}$一定共線.命題Q:若$\overrightarrow{a}$•$\overrightarrow$>0,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角是銳角.則下列選項中是真命題的是(  )
A.P∧QB.(¬P)∧QC.(¬P)∧(¬Q)D.P∧(¬Q)

分析 先判斷出命題P和命題Q的真假,進而根據(jù)復(fù)合命題真假判斷的真值表,可得答案.

解答 解:命題P:若平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=($\overrightarrow$•$\overrightarrow{c}$)•$\overrightarrow{a}$,則向量$\overrightarrow{a}$與$\overrightarrow{c}$共線或$\overrightarrow$為零向量.故為假命題,
命題Q:若$\overrightarrow{a}$•$\overrightarrow$>0,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角是銳角或零解,故為假命題.
故命題P∧Q,(¬P)∧Q,P∧(¬Q)均為假命題,
命題(¬P)∧(¬Q)為真命題,
故選:C

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,向量的運算,向量的夾角等知識點,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,a1>1,且$6{S_n}={a_n}^2+3{a_n}+2$,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)若${b_n}=\frac{{{a_n}-1}}{2^n}$,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)k∈R,函數(shù)f(x)=lnx-kx.
(1)若k=2,求曲線y=f(x)在P(1,-2)處的切線方程;
(2)若f(x)無零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知MOD函數(shù)是一個求余函數(shù),其格式為MOD(n,m),其結(jié)果為n除以m的余數(shù),例如MOD(8,3)=2.右面是一個算法的程序框圖,當(dāng)輸入n的值為12時,則輸出的結(jié)果為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,底面ABCD是平行四邊形,AB=BC=2a,AC=2$\sqrt{3}$a,E的PA的中點.
(Ⅰ)求證:平面BED⊥平面PAC;
(Ⅱ)求點E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)Sn為數(shù)列{an}的前n項和,已知a1=2,對任意p、q∈N*,都有ap+q=ap+aq,則f(n)=$\frac{{S}_{n}+60}{n+1}$(n∈N*)的最小值為$\frac{29}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,它的一個焦點在拋物線y2=-4x的準(zhǔn)線上.點E為橢圓C的右焦點.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+t與橢圓C交于M,N兩點.
(i)若t≠0,直線EM與EN的斜率分別為k1、k2,滿足k1+k2=0,求證:直線l過定點,并求出該定點的坐標(biāo);
(ii)在x軸上是否存在點G(m,0),使得|MG|=|NG|,且|MN|=2?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.微信是騰訊公司推出的一種手機通訊軟件,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶為“A組”,否則為“B組”,調(diào)查結(jié)果如下:
A組B組合計
男性262450
女性302050
合計5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“A組”用戶與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“A組”和“B組”的人數(shù);
(3)從(2)中抽取的5人中再隨機抽取2人贈送200元的護膚品套裝,求這2人中至少有1人在“A組”的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.過點P(a,-2)作拋物線C:x2=4y的兩條切線,切點分別為A(x1,y1),B(x2,y2).
(Ⅰ) 證明:x1x2+y1y2為定值;
(Ⅱ) 記△PAB的外接圓的圓心為點M,點F是拋物線C的焦點,對任意實數(shù)a,試判斷以PM為直徑的圓是否恒過點F?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案