11.下列四個判斷:
①某校高三一班和高三二班的人數(shù)分別是m,n,某次測試數(shù)學(xué)平均分分別是a,b,則這兩個班的數(shù)學(xué)平均分為$\frac{a+b}{2}$;
②10名工人某天生產(chǎn)同一零件的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③從總體中抽取的樣本為$({x_1},y{_1}),(x{_2},{y_2}),…,({x_n},{y_n}),若記\overline x=\frac{1}{n}\sum_{i=1}^n{{x_i},\overline y=\frac{1}{n}}\sum_{i=1}^n{\;}{y_i}$,則回歸直線$\widehaty=\widehatbx+\widehata$必過點($\overline x,\overline y$)
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=4,則P(ξ>2)=0.2
其中正確的個數(shù)有( 。
A.4個B.3個C.2個D.1個

分析 由平均數(shù)的定義,計算即可判斷①;
運用平均數(shù)、中位數(shù)和眾數(shù)的定義,即可判斷②;
由線性回歸直線必過樣本中心點,即可判斷③;
由ξ服從正態(tài)分布N(0,σ2),即曲線關(guān)于y軸對稱,求得P(ξ<-2),即可判斷④.

解答 解:①由題意可得這兩個班的數(shù)學(xué)平均分為$\frac{ma+nb}{m+n}$,故①錯;
②由題意可得a=$\frac{1}{10}$(15+17+14+10+15+17+17+16+14+12)=14.7,b=15,c=17,
即有c>b>a,故②錯;
③由線性回歸方程的特點,可得回歸直線$\widehaty=\widehatbx+\widehata$必過樣本中心點($\overline x,\overline y$),故③對;
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ<-2)=0.5-0.4=0.1,
則P(ξ>2)=P(ξ<-2)=0.1,故④錯.
故選:D.

點評 本題考查命題的真假判斷,考查平均數(shù)、中位數(shù)和眾數(shù),以及線性回歸直線和正態(tài)分布的特點,考查判斷能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C的極坐標(biāo)方程是ρ2=4ρcosθ+6ρsinθ-12,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)).
(I)寫出直線l的一般方程與曲線C的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線C向左平移2個單位長度,向上平移3個單位長度,得到曲線D,設(shè)曲線D經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$得到曲線E,設(shè)曲線E上任一點為M(x,y),求$\sqrt{3}x+\frac{1}{2}y$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為θ,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$.
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$•$\overrightarrow$;
(2)若$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,求θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義:用{x}表示不小于x的最小整數(shù),例如{2}=2,{1,2}=2,{-1,1}=-1,已知數(shù)列{an}滿足:${a_1}=1,{a_{n+1}}={a_n}^2+{a_n}$,則{$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}+…+\frac{1}{{a}_{2016}+1}$}=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)$z=\frac{2+4i}{1+i}$(i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)點的坐標(biāo)是( 。
A.(3,1)B.(-1,3)C.(3,-1)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)l,m,n表示三條直線,α,β,γ表示三個平面,則下列命題中不成立的是(  )
A.若m?α,n?α,m∥n,則n∥α
B.若α⊥γ,α∥β,則β⊥γ
C.若m?β,n是l在β內(nèi)的射影,若m⊥l,則m⊥n
D.若α⊥β,α∩β=m,l⊥m,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx-x+1.
(1)求函數(shù)f(x)的單調(diào)性;
(2)已知x0為整數(shù),若使不等式$f({x_0})+\frac{x_0}{2}+a>0$成立的x0有兩個,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( 。
A.$\frac{|cos3x|}{x}$B.$\frac{1+cos2x}{2x}$
C.$\frac{(4{x}^{2}-{π}^{2})(4{x}^{2}-9{π}^{2})}{{x}^{5}}$D.$\frac{|sin2x|}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx,g(x)=ax2-bx(a,b為常數(shù)).
(1)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)a=$\frac{1}{2}$時,設(shè)h(x)=f(x)+g(x),若函數(shù)h(x)在定義域上存在單調(diào)減區(qū)間,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案