13.命題“若x=1,則x2-3x+2=0”的逆否命題是( 。
A.若x≠1,則x2-3x+2≠0B.若x2-3x+2=0,則x=1
C.若x2-3x+2=0,則x≠1D.若x2-3x+2≠0,則x≠1

分析 根據(jù)逆否命題的定義,我們易求出命題的逆否命題

解答 解:將命題的條件與結(jié)論交換,并且否定可得逆否命題:若x2-3x+2≠0,則x≠1
故選:D

點評 本題考查的知識點是四種命題間的逆否關(guān)系,熟練掌握四種命題的定義及結(jié)構(gòu)形式是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.復數(shù)z=$\frac{(1-i)(4-i)}{1+i}$的共軛復數(shù)的虛部為(  )
A.-4iB.-4C.4iD.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=(x-a)2(a∈R),g(x)=lnx,
(I)試求曲線F(x))=f(x)+g(x)在點(1,F(xiàn)(1))處的切線l與曲線F(x)的公共點個數(shù);
(II)若函數(shù)G(x)=f(x).g(x)有兩個極值點,求實數(shù)a的取值范圍.
(附:當a<0,x趨近于0時,2lnx-$\frac{a}{x}$趨向于+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=x+xlnx,若k∈Z,且k(x-2)<f(x)對任意的x>2恒成立,則k的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設f(x)=$\left\{\begin{array}{l}{3{e}^{x-1},x<2}\\{lo{g}_{2}({x}^{2}-1),x≥2}\end{array}\right.$,則不等式f(x)<3的解集為(  )
A.(-∞,$\sqrt{7}$)B.(-∞,3)C.(-∞,1)∪[2,$\sqrt{7}$)D.(-∞,1)∪[2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.當$k∈({0,\frac{1}{2}})$時,方程$\sqrt{|x|}=k({x+1})$的根的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.“l(fā)og2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在平面直角坐標系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點P(x1,y1),Q(x2,y2)之間的“折線距離”.則下列命題中:
①若A(-1,3),B(1,0),則有d(A,B)=5.
②到原點的“折線距離”等于1的所有點的集合是一個圓.
③若C點在線段AB上,則有d(A,C)+d(C,B)=d(A,B).
④到M(-1,0),N(1,0)兩點的“折線距離”相等的點的軌跡是直線x=0.
真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+bx({a,b∈R})$.
(1)若函數(shù)f(x)在(0,2)上存在兩個極值點,求3a+b的取值范圍;
(2)當a=0,b≥-1時,求證:對任意的實數(shù)x∈[0,2],$|{f(x)}|≤2b+\frac{8}{3}$恒成立.

查看答案和解析>>

同步練習冊答案