分析 如圖所示,建立空間直角坐標(biāo)系.利用向量夾角公式即可得出.
解答 解:如圖所示,建立空間直角坐標(biāo)系.
D(0,0,0),B(3,2,0),C1(0,2,1),E(0,1,0),D1(0,0,1).
∴$\overrightarrow{B{C}_{1}}$=(-3,0,1),$\overrightarrow{{D}_{1}E}$=(0,1,-1).
∴cos$<\overrightarrow{B{C}_{1}},\overrightarrow{{D}_{1}E}>$=$\frac{\overrightarrow{B{C}_{1}}•\overrightarrow{{D}_{1}E}}{|\overrightarrow{B{C}_{1}}||\overrightarrow{{D}_{1}E}|}$=$\frac{-1}{\sqrt{10}×\sqrt{2}}$=$-\frac{\sqrt{5}}{10}$.
∴異面直線BC1和D1E所成角的大小為arccos$\frac{\sqrt{5}}{10}$.
點(diǎn)評(píng) 本題考查了通過(guò)求向量的夾角公式求異面直線的夾角、數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=y>z | B. | x=z>y | C. | y=z>x | D. | x=y<z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k2 | B. | (k+1)2 | C. | k2+(k+1)2+k2 | D. | (k+1)2+k2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{π}{4},\frac{π}{2})$ | B. | $(0,\frac{π}{3})$ | C. | $(\frac{π}{6},\frac{π}{4})$ | D. | $(0,\frac{π}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com