10.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,已知AB=2,BC=3,AA1=1,E為CD中點(diǎn),求異面直線BC1和D1E所成角的大小.

分析 如圖所示,建立空間直角坐標(biāo)系.利用向量夾角公式即可得出.

解答 解:如圖所示,建立空間直角坐標(biāo)系.
D(0,0,0),B(3,2,0),C1(0,2,1),E(0,1,0),D1(0,0,1).
∴$\overrightarrow{B{C}_{1}}$=(-3,0,1),$\overrightarrow{{D}_{1}E}$=(0,1,-1).
∴cos$<\overrightarrow{B{C}_{1}},\overrightarrow{{D}_{1}E}>$=$\frac{\overrightarrow{B{C}_{1}}•\overrightarrow{{D}_{1}E}}{|\overrightarrow{B{C}_{1}}||\overrightarrow{{D}_{1}E}|}$=$\frac{-1}{\sqrt{10}×\sqrt{2}}$=$-\frac{\sqrt{5}}{10}$.
∴異面直線BC1和D1E所成角的大小為arccos$\frac{\sqrt{5}}{10}$.

點(diǎn)評(píng) 本題考查了通過(guò)求向量的夾角公式求異面直線的夾角、數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖所示,在正方形ABCD中,E、F、G分別是邊BC、CD、DA的中點(diǎn),令x=$\overrightarrow{AC}$•$\overrightarrow{AE}$,y=$\overrightarrow{AC}$•$\overrightarrow{AF}$,z=$\overrightarrow{AC}$•$\overrightarrow{AG}$,則x,y,z的大小關(guān)系為(  )
A.x=y>zB.x=z>yC.y=z>xD.x=y<z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=$\sqrt{1-x}$+log3x的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.(0,1]C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.用數(shù)學(xué)歸納法證明:12+22+32+…+n2+…+22+12=$\frac{n(2{n}^{2}+1)}{3}$,第二步證明由n=k到n=k+1時(shí),左邊應(yīng)加( 。
A.k2B.(k+1)2C.k2+(k+1)2+k2D.(k+1)2+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.從5件產(chǎn)品中任取2件,則不同取法的種數(shù)為10(結(jié)果用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=lnx+tanα(0<α<$\frac{π}{2}$)的導(dǎo)函數(shù)為f'(x),若方程f'(x)=f(x)的根x0小于1,則α的取值范圍為( 。
A.$(\frac{π}{4},\frac{π}{2})$B.$(0,\frac{π}{3})$C.$(\frac{π}{6},\frac{π}{4})$D.$(0,\frac{π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,有一圓盤(pán)其中的陰影部分的圓心角為75°,若向圓內(nèi)投鏢,如果某人每次都投入圓內(nèi),那么他投中陰影部分的概率為$\frac{5}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如果質(zhì)點(diǎn)M按規(guī)律s=3+t2運(yùn)動(dòng),則在一小段時(shí)間[2,2.1]中相應(yīng)的平均速度是4.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,⊙O的弦AB、CD相交于E,過(guò)點(diǎn)A作⊙O的切線與DC的延長(zhǎng)線交于點(diǎn)P.PA=6,AE=CD=EP=9.
(Ⅰ)求BE;
(Ⅱ)求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案