分析 由數(shù)列遞推式求出數(shù)列首項,再結(jié)合an=Sn-Sn-1(n≥2)求得數(shù)列通項公式.
解答 解:∵Sn=6n2-5n-4,
∴a1=S1=-3;
當(dāng)n≥2時,an=Sn-Sn-1=6n2-5n-4-[6(n-1)2-5(n-1)-4]=12n-11.
驗證a1=-3不適合上式,
∴an=$\left\{\begin{array}{l}{-3,n=1}\\{12n-11,n≥2,n∈N*}\end{array}\right.$.
點評 本題考查數(shù)列遞推式:當(dāng)n=1時,a1=S1,當(dāng)n≥2時,an=Sn-Sn-1,訓(xùn)練了由數(shù)列的前n項和求數(shù)列的通項公式,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | (-∞,1] | C. | [1,+∞) | D. | (-∞,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | 2$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com