【題目】某校的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)該校學(xué)生的良好“用眼習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120分問(wèn)卷.對(duì)收回的100份有效問(wèn)卷進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

做不到科學(xué)用眼

能做到科學(xué)用眼

合計(jì)

45

10

55

30

15

45

合計(jì)

75

25

100

(1)現(xiàn)按女生是否能做到科學(xué)用眼進(jìn)行分層,從45份女生問(wèn)卷中抽取了6份問(wèn)卷,從這6份問(wèn)卷中再隨機(jī)抽取3份,并記其中能做到科學(xué)用眼的問(wèn)卷的份數(shù),試求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)若在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為良好“用眼習(xí)慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請(qǐng)說(shuō)明理由.

附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中.

獨(dú)立性檢驗(yàn)臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

【答案】1)分布列見解析,;(2

【解析】

試題(1)分層從份女生問(wèn)卷中抽取了份問(wèn)卷,其中科學(xué)用眼人,不科學(xué)用眼人,若從這份問(wèn)卷中隨機(jī)抽取份,隨機(jī)變量.利用超幾何分布即可得出分布列及其數(shù)學(xué)期望;(2)根據(jù)獨(dú)立性檢驗(yàn)的基本思想的應(yīng)用計(jì)算公式可得的觀測(cè)值,即可得出.

試題解析:(1科學(xué)用眼人,不科學(xué)用眼人.

則隨機(jī)變量,

,

分布列為


0

1

2





2

由表可知270630303840;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與橢圓切于點(diǎn),與圓交于點(diǎn),圓在點(diǎn)處的切線交于點(diǎn),為坐標(biāo)原點(diǎn),則的面積的最大值為( )

A.B.2C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,四邊形都是邊長(zhǎng)為2的正方形,點(diǎn),分別是,的中點(diǎn),二面角的大小為60°.

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了2018年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各)的月工資,得到這名農(nóng)民工的月工資均在(百元)內(nèi),且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

(1)的值;

(2)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有.

①完成如下所示列聯(lián)表

技術(shù)工

非技術(shù)工

總計(jì)

月工資不高于平均數(shù)

月工資高于平均數(shù)

總計(jì)

②則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,a為常數(shù))),過(guò)點(diǎn)、傾斜角為的直線的參數(shù)方程滿足,(為參數(shù)).

(1)求曲線C的普通方程和直線的參數(shù)方程;

(2)若直線與曲線C相交于A、B兩點(diǎn)(點(diǎn)P在A、B之間),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

2)對(duì)任意的,,,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線的斜率為,直線的斜率為,且.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè),,連接并延長(zhǎng),與軌跡交于另一點(diǎn),點(diǎn)中點(diǎn),是坐標(biāo)原點(diǎn)的面積之和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn),.

(1)求證:平面;

(2)若異面直線所成角的余弦值為,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案