【題目】在四棱錐中, , , , , 是棱的中點(diǎn),且.
(Ⅰ)求證: 平面;
(Ⅱ)若為棱上一點(diǎn),滿足,求二面角的余弦值.
【答案】(1)見解析;(2)余弦值為.
【解析】試題分析:(1)證明線面垂直,先找線線垂直, , ,所以,
以,再由得到線面垂直;(2)由空間向量坐標(biāo)系的方法,得到兩個(gè)半平面的法向量,由向量的夾角公式得到二面角的余弦值.
解析:
(Ⅰ)取中點(diǎn),連接,
由已知, ,故為平行四邊形.
所以,因?yàn)?/span>,故.
又,所以,
,所以.
由已知可求, ,所以,所以.
又,所以.
(Ⅱ)由(Ⅰ)可得,又,
以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系(如圖),可得, , , .
由為棱的中點(diǎn),得.
向量, , , .
由點(diǎn)在棱上,設(shè), .
故
.
由,得,
因此, ,解得.
即.
設(shè)為平面的法向量,則即
不妨令,可得為平面的一個(gè)法向量.
取平面的法向量,
則
.
易知,二面角是銳角,所以其余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆江西省南昌市高三第一輪】已知分別為三個(gè)內(nèi)角的對(duì)邊,且.
(Ⅰ)求;
(Ⅱ)若為邊上的中線, , ,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.
(1)若曲線為參數(shù))與曲線相交于兩點(diǎn),求;
(2)若是曲線上的動(dòng)點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市在2017年五一正式開業(yè),開業(yè)期間舉行開業(yè)大酬賓活動(dòng),規(guī)定:一次購(gòu)買總額在區(qū)間內(nèi)者可以參與一次抽獎(jiǎng),根據(jù)統(tǒng)計(jì)發(fā)現(xiàn)參與一次抽獎(jiǎng)的顧客每次購(gòu)買金額分布情況如下:
(1)求參與一次抽獎(jiǎng)的顧客購(gòu)買金額的平均數(shù)與中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留到整數(shù));
(2)若根據(jù)超市的經(jīng)營(yíng)規(guī)律,購(gòu)買金額與平均利潤(rùn)有以下四組數(shù)據(jù):
試根據(jù)所給數(shù)據(jù),建立關(guān)于的線性回歸方程,并根據(jù)(1)中計(jì)算的結(jié)果估計(jì)超市對(duì)每位顧客所得的利潤(rùn).
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).該地一建設(shè)銀行統(tǒng)計(jì)連續(xù)五年的儲(chǔ)蓄存款(年底余額)得到下表:
年份 | |||||
儲(chǔ)蓄存款 (千億元) |
為便于計(jì)算,工作人員將上表的數(shù)據(jù)進(jìn)行了處理(令, ),得到下表:
時(shí)間 | |||||
儲(chǔ)蓄存款 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)通過(Ⅰ)中的方程,求出關(guān)于的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測(cè)到年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
附:線性回歸方程,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長(zhǎng)方體,直線與平面所成角為垂直于點(diǎn)為的中點(diǎn).
(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點(diǎn),使得二面角的余弦值為?若存在,確定點(diǎn)位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機(jī)抽取500個(gè),測(cè)量這些桔柚的直徑,所得數(shù)據(jù)整理如下:
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答是否有以上的把握認(rèn)為“桔柚直徑與所在基地有關(guān)”?
(2)求優(yōu)質(zhì)品率較高的基地的500個(gè)桔柚直徑的樣本平均數(shù) (同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(3)記甲基地直徑在范圍內(nèi)的五個(gè)桔柚分別為,現(xiàn)從中任取二個(gè),求含桔柚的概率.
附: , .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com