16.(1)求證:$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$.
(2)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個式子中選擇一個,求出這個常數(shù);
②根據(jù)①的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式.

分析 (1)兩邊平方證明即可;
(2)①根據(jù)同角的三角函數(shù)的關(guān)系以及二倍角公式計算即可;②根據(jù)計算結(jié)果推廣公式即可.

解答 (1)證明:要證明$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$成立,
只需證明$\sqrt{8}+\sqrt{3}<\sqrt{5}+\sqrt{6}$,…(3分)
即${(\sqrt{8}+\sqrt{3})^2}<{(\sqrt{5}+\sqrt{6})^2}$,
即$8+2\sqrt{24}+3<5+2\sqrt{30}+6$…(7分)
從而只需證明$2\sqrt{24}<2\sqrt{30}$
即24<30,這顯然成立.
這樣,就證明了$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$…(9分)
(2)解:①選擇(2)式,計算如下:
sin215°+cos215°-sin15°cos15°
=1-$\frac{1}{2}$sin30°
=1-$\frac{1}{4}$=$\frac{3}{4}$.…(14分)
②三角恒等式為sin2α+cos2(30°-α)-sinαcos(30°-α)=$\frac{3}{4}$.…(17分)

點評 本題考查了簡單的合情推理問題,考查三角函數(shù)的恒等變換以及不等式的證明,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若以3,4,x為三邊組成一個銳角三角形.則x的取值范圍為($\sqrt{7}$,5).若以3,4,x為三邊組成一個鈍角三角形.則x的取值范圍為(5,7)或(1,$\sqrt{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的首項a1=4,當(dāng)n≥2時,an-1an-4an-1+4=0,數(shù)列{bn}滿足bn=$\frac{1}{{2-{a_n}}}(n∈N{\;}^*)$
(1)求證:數(shù)列{bn}是等差數(shù)列,并求{bn}的通項公式;
(2)若cn=4bn•(nan-6),如果對任意n∈N*,都有cn+$\frac{1}{2}$t≤2t2,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xoy中直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=2.
(1)寫出直線l的一般方程及圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)P(-1,1),直線l與圓C相交于A,B兩點,求|PA|-|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知直線l的方程為ax-y+2+a=0(a∈R),求證:不論a為何實數(shù),直線l恒過一定點P;
(2)過(1)中的點P作一條直線m,使它被直線l1:4x+y+3=0和l2:3x-5y-5=0截得的線段被點P平分,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.求函數(shù)$f(x)=sin(-2x+\frac{π}{2})$的單調(diào)遞減區(qū)間[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“sinα<0”是“α為第三、四象限角”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.甲、乙兩人對目標(biāo)各射擊一次,甲命中目標(biāo)的概率為$\frac{2}{3}$,乙命中目標(biāo)的概率為$\frac{4}{5}$,若命中目標(biāo)的人數(shù)為X,則D(X)等于( 。
A.$\frac{85}{225}$B.$\frac{86}{225}$C.$\frac{88}{225}$D.$\frac{89}{225}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若兩個非零向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow a}|$,則向量$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角是( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊答案