9.已知等差數(shù)列{an}的前n項和Sn=n2,則數(shù)列{an}的公差d=2.

分析 由等差數(shù)列的前n項和求得等差數(shù)列的前2項,由d=a2-a1求得公差.

解答 解:∵等差數(shù)列{an}的前n項和Sn=n2,
∴a1=S1=1,a2=S2-S1=4-1=3,
∴公差d=a2-a1=3-1=2.
故答案為:2.

點評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.直線l過點(1,0),且傾斜角為$\frac{5π}{6}$,則直線l的方程為( 。
A.y=-$\frac{{\sqrt{3}}}{3}$x+1B.y=$\frac{{\sqrt{3}}}{3}({x-1})$C.y=-$\frac{{\sqrt{3}}}{3}$x-1D.y=-$\frac{{\sqrt{3}}}{3}({x-1})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,已知四棱錐P-ABCD,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.
(Ⅰ)證明:MN∥平面PAD;
(Ⅱ)若PA與平面ABCD所成的角為45°,求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知2x+3y-1<0,且x>0,y>0,則z=x-2y的取值范圍為(-$\frac{2}{3}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.復數(shù)$\frac{2-i}{1-i}$=( 。
A.$\frac{3}{2}-\frac{i}{2}$B.$\frac{3}{2}+\frac{i}{2}$C.$-\frac{3}{2}+\frac{i}{2}$D.$-\frac{3}{2}-\frac{i}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F(xiàn)分別為AB,BC的中點,則$\overrightarrow{CE}•\overrightarrow{AF}$=( 。
A.9B.-9C.7D.-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={x|y=$\sqrt{x-3}$},B=(0,+∞),則A∩B=(  )
A.(0,+∞)B.(3,+∞)C.[0,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,設△ABC的個內(nèi)角A、B、C對應的三條邊分別為a、b、c,且角A、B、C成等差數(shù)列,a=2,線段AC的垂直平分線分別交線段AB、AC于D、E兩點.
(1)若△BCD的面積為$\frac{\sqrt{3}}{3}$,求線段CD的長;
(2)若DE=$\frac{\sqrt{6}}{2}$,求角A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設x∈(0,$\frac{π}{2}$],則下列命題:(1)x≥sinx;(2)sinx≥xcosx;(3)y=$\frac{sinx}{x}$是單調(diào)減函數(shù),其中真命題的個數(shù)是(  )
A.,0B.1C.2D.3

查看答案和解析>>

同步練習冊答案