16.曲線y=2x2-x在點(0,0)處的切線方程為(  )
A.x+y=0B.x-y=0C.x-y+2=0D.x+y+2=0

分析 欲求曲線y=2x2-x在點(0,0)處的切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.

解答 解:∵y=f(x)=2x2-x,
∴f'(x)=4x-1,當(dāng)x=0時,f'(0)=-1得切線的斜率為-1,所以k=-1;
所以曲線在點(0,0)處的切線方程為:
y-0=-(x-0),即x+y=0.
故選A.

點評 本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)$f(x)=cos2xcosθ-sin2xcos({\frac{π}{2}-θ})({|θ|<\frac{π}{2}})$在$({-\frac{3π}{8},-\frac{π}{6}})$上單調(diào)遞增,則$f({\frac{π}{16}})$的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)f(x)=cos2ωx的圖象向右平移$\frac{3π}{4ω}$個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在$[-\frac{π}{4},\frac{π}{6}]$上為減函數(shù),則正實數(shù)ω的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={0,2,4,6},B={x∈N|2x<33},則集合A∩B的子集個數(shù)為( 。
A.8B.7C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知正項等比數(shù)列{bn}的前n項和為Sn,b3=4,S3=7,數(shù)列{an}滿足an+1-an=n+1(n∈N+),且a1=b1
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實數(shù)x,y滿足$\left\{\begin{array}{l}y≤1\\ y≥2x-1\\ x+y≥-4.\end{array}\right.$如果目標(biāo)函數(shù)z=y-x的最小值為( 。
A.-2B.-4C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計厚度,單位:米),按計劃容積為72π立方米,且h≥2r,假設(shè)其建造費用僅與表面積有關(guān)(圓柱底部不計),已知圓柱部分每平方米的費用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費用為y千元.
(Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費用最小時的r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖四棱錐E-ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC.
(Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.拋物線x=ay2(a≠0)的焦點坐標(biāo)是$({\frac{1}{4a},0})$.

查看答案和解析>>

同步練習(xí)冊答案