A. | 4 | B. | 1 | C. | 18 | D. | $\frac{4}{5}$ |
分析 根據(jù)已知的約束條件畫出滿足約束條件的可行域,分析z=x2+y2表示的幾何意義,結(jié)合圖象即可給出z=x2+y2的最小值.
解答 解:約束條件$\left\{\begin{array}{l}x+2y≥2\\ 3x-y-6≤0\\ 2x-3y+3≥0\end{array}\right.$,對應(yīng)的平面區(qū)域如下圖示:
三角形頂點坐標分別為(3,3)、(0,1)和(2,0),
z=x2+y2表示可行域內(nèi)的點(x,y)與原點(0,0)距離的平方,
由圖可知|OP|2為z=x2+y2的最小值,此時z=x2+y2=$(\frac{2}{\sqrt{{1}^{2}+{2}^{2}}})^{2}$=$\frac{4}{5}$.
故選:D.
點評 平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時,關(guān)鍵是正確地畫出平面區(qū)域,分析表達式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點的坐標,即可求出答案.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ω=2 | B. | 函數(shù)f(x)的對稱軸為x=-$\frac{π}{2}$+kx(k∈Z) | ||
C. | 函數(shù)f(x)的對稱中心為($\frac{π}{2}$+kx,0)(k∈Z) | D. | 函數(shù)f(x)在[$\frac{π}{2}$,$\frac{2π}{3}$]上的最小值為-$\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$-$\sqrt{2}$ | B. | 1+$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$+$\sqrt{2}$ | C. | 1-$\sqrt{2}$,1+$\sqrt{2}$ | D. | 2-$\sqrt{2}$,2+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $±\sqrt{3}$ | B. | ±1 | C. | $\sqrt{3}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com