18.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx+sinx,1),$\overrightarrow{n}$=(sinx,$\frac{3}{2}$),函數(shù)f(x)=$\overrightarrow{n}$$•\overrightarrow{m}$.
(1)求函數(shù)f(x)的最小周期T及單調(diào)遞增區(qū)間;
(2)已知a,b,c分別△ABC內(nèi)角A,B,C的對(duì)邊a=2$\sqrt{3}$,c=4,且f(A)是函數(shù)f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面積S.

分析 (1)由向量的點(diǎn)乘運(yùn)算,得到f(x)的解析式,由三角函數(shù)公式化簡(jiǎn)后得到最小正周期與遞增區(qū)間.
(2)由x的范圍,得到f(x)的最大值,得A,由此得到三角形面積.

解答 解:(1)∵向量$\overrightarrow{m}$=($\sqrt{3}$cosx+sinx,1),$\overrightarrow{n}$=(sinx,$\frac{3}{2}$),函數(shù)f(x)=$\overrightarrow{n}$$•\overrightarrow{m}$.
∴f(x)=$\sqrt{3}$cosxsinx+sin2x+$\frac{3}{2}$=$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$,
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+2,
=sin(2x-$\frac{π}{6}$)+2,
∴函數(shù)f(x)的最小周期T=π.
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
得:kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,
∴f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
(2)由(1)知,f(x)=sin(2x-$\frac{π}{6}$)+2,
∵當(dāng)x∈[0,$\frac{π}{2}$]時(shí),
2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
當(dāng)2x-$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{π}{3}$時(shí),f(x)取得最大值3,
∴f(A)=3,得A=$\frac{π}{3}$,
由余弦定理得:a2=b2+c2-2bccosA,
可得:12=b2+16-4b,
∴b=2,
∴△ABC的面積S=$\frac{1}{2}$bcsinA=2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查由向量的點(diǎn)乘運(yùn)算,三角函數(shù)化簡(jiǎn),以及由x得到A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\sqrt{10}cosα}\\{y=1+\sqrt{10}sinα}}\end{array}\right.$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為sinθ-cosθ=$\frac{1}{ρ}$,求直線被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于點(diǎn)A,B兩點(diǎn),M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對(duì)稱點(diǎn),設(shè)$\overrightarrow{AM}=λ\overrightarrow{AB}$.
(Ⅰ)若$λ=\frac{3}{4}$,求橢圓C的離心率;
(Ⅱ)若△PF1F2為等腰三角形,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,OPQ是半徑為2,圓心角為$\frac{π}{3}$的扇形,C是扇形弧上的一動(dòng)點(diǎn),記∠COP=θ,四邊形OPCQ的面積為S.
(1)找出S與θ的函數(shù)關(guān)系;
(2)試探求當(dāng)θ取何值時(shí),S最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=2$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$,則下列結(jié)論錯(cuò)誤的是( 。
A.f(x)在區(qū)間(0,$\frac{π}{6}$)上單調(diào)遞增
B.f(x)的一個(gè)對(duì)稱中心為(-$\frac{π}{12}$,0)
C.當(dāng)x∈[0,$\frac{π}{3}$]時(shí),fx)的值域?yàn)閇1,$\sqrt{3}$]
D.先將函數(shù)f(x)的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$個(gè)單位后得到函數(shù)y=2cos(4x+$\frac{π}{6}$)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知|${\overrightarrow a}$|=2,$\overrightarrow e$為單位向量,當(dāng)$\overrightarrow a$,$\overrightarrow e$的夾角為$\frac{π}{3}$時(shí),$\overrightarrow a$+$\overrightarrow e$在$\overrightarrow a$-$\overrightarrow e$上的投影為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{2}}{2}$,其右焦點(diǎn)到直線2ax+by-$\sqrt{2}$=0的距離為$\frac{\sqrt{2}}{3}$.
(1)求橢圓C1的方程;
(2)過點(diǎn)P(0,-$\frac{1}{3}$)的直線l交橢圓C1于A,B兩點(diǎn).
①證明:線段AB的中點(diǎn)G恒在橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的內(nèi)部;
②判斷以AB為直徑的圓是否恒過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等差數(shù)列{an},Sn為數(shù)列{an}的前n項(xiàng)和,若Sn=an2+4n+a-4(a∈R),記數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和為Tn,則T10=( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{9}{40}$D.$\frac{5}{22}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,AB=BC=1,∠APB=90°,∠BPC=45°,則$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案