4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,過點(diǎn)F作傾斜角為30°的直線與雙曲線左右兩支各有一個(gè)交點(diǎn),過點(diǎn)F作傾斜角為60°的直線與雙曲線右支交于不同的兩點(diǎn),則該雙曲線離心率的取值范圍是( 。
A.(1,$\frac{2\sqrt{3}}{3}$)B.($\frac{2\sqrt{3}}{3}$,2)C.[$\frac{2\sqrt{3}}{3}$,2]D.(2,+∞)

分析 要使直線與雙曲線的右支有兩個(gè)交點(diǎn),需使雙曲線的其中一漸近線方程的斜率小于直線的斜率,即$\frac{a}$<tan60°,求得a和b的不等式關(guān)系,進(jìn)而化成a和c的不等式關(guān)系,求得離心率的一個(gè)范圍;再由當(dāng)直線傾斜角為30°時(shí),直線與雙曲線左、右兩支各有一個(gè)交點(diǎn),可得$\frac{a}$>tan30°,同樣可得e的范圍,最后綜合可得求得e的范圍.

解答 解:當(dāng)直線傾斜角為60°時(shí),直線與雙曲線右支有兩個(gè)不同的交點(diǎn),
需使雙曲線的其中一漸近線方程的斜率小于直線的斜率,
即$\frac{a}$<tan60°=$\sqrt{3}$,
即b<$\sqrt{3}$a,
∴$\sqrt{{c}^{2}-{a}^{2}}$<$\sqrt{3}$a,
整理得c<2a,
∴e=$\frac{c}{a}$<2;
當(dāng)直線傾斜角為30°時(shí),直線與雙曲線左、右兩支各有一個(gè)交點(diǎn),
可得$\frac{a}$>tan30°=$\frac{\sqrt{3}}{3}$,
即有b>$\frac{\sqrt{3}}{3}$a,
由$\sqrt{{c}^{2}-{a}^{2}}$>$\frac{\sqrt{3}}{3}$a,
整理得c>$\frac{2\sqrt{3}}{3}$a,
∴e=$\frac{c}{a}$>$\frac{2\sqrt{3}}{3}$.
綜上可得$\frac{2\sqrt{3}}{3}$<e<2.
故選B.

點(diǎn)評(píng) 本題主要考查了雙曲線的簡單性質(zhì).在求離心率的范圍時(shí),注意雙曲線的離心率與直線的斜率的關(guān)系,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,幾何體ABCA1B1C1中,AA1,BB1,CC1都垂直平面ABC,BB1=CC1=2AA1=2AB=2BC=8,$AC=4\sqrt{2}$.
(1)證明:A1B⊥平面A1B1C1;
(2)求二面角B1-A1C-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.假設(shè)小明訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到,小明離家的時(shí)間在早上7:00-8:00之間,則他在離開家之前能拿到報(bào)紙的概率( 。
A.$\frac{1}{3}$B.$\frac{1}{8}$C.$\frac{2}{3}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)(1-i)(x+yi)=2,其中x,y是實(shí)數(shù),則x+yi的共軛復(fù)數(shù)在復(fù)平面對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)$f(x)=\sqrt{x-2}$的定義域是( 。
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個(gè)問題用今天的白話敘述為:“有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于20尺,該女子所需的天數(shù)至少為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,則|$\frac{(-1+i)(1+i)}{{i}^{3}}$|=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為4,2,則輸出v的值為(  )
A.66B.33C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,D、E是BC邊上兩點(diǎn),BD、BA、BC構(gòu)成以2為公比的等比數(shù)列,BD=6,∠AEB=2∠BAD,AE=9,則三角形ADE的面積為(  )
A.31.2B.32.4C.33.6D.34.8

查看答案和解析>>

同步練習(xí)冊答案