10.在空間直角坐標(biāo)系中,點(diǎn)(2,1,4)關(guān)于x軸的對稱點(diǎn)的坐標(biāo)為( 。
A.(-2,1,-4)B.(-2,-1,-4)C.(2,-1,-4)D.(2,1,-4)

分析 先根據(jù)空間直角坐標(biāo)系對稱點(diǎn)的特征,點(diǎn)(x,y,z)關(guān)于x軸的對稱點(diǎn)的坐標(biāo)為只須將橫坐標(biāo)、豎坐標(biāo)變成原來的相反數(shù)即可,即可得對稱點(diǎn)的坐標(biāo).

解答 解:∵在空間直角坐標(biāo)系中,
點(diǎn)(x,y,z)關(guān)于x軸的對稱點(diǎn)的坐標(biāo)為:(x,-y,-z),
∴點(diǎn)(2,1,4)關(guān)于x軸的對稱點(diǎn)的坐標(biāo)為:(2,-1,-4).
故選:C.

點(diǎn)評 本小題主要考查空間直角坐標(biāo)系、空間直角坐標(biāo)系中點(diǎn)的坐標(biāo)特征等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓C1:x2+( y-1)2=1和圓C2:(x-3)2+(y-4)2=25的位置關(guān)系為( 。
A.相交B.內(nèi)切C.外切D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,a=4,b=2,C=45°,則△ABC的面積是(  )
A.5B.$2\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=f′($\frac{π}{3}$)sinx+x,則f′(π)=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,某圓拱橋的水面跨度16m,拱高4m.現(xiàn)有一船寬10m,則該船水面以上的高度不得超過( 。
A.$5\sqrt{3}+6$B.$5\sqrt{3}$C.$5\sqrt{3}-6$D.$-5\sqrt{3}+6$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4)
(Ⅰ)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(Ⅱ)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得四邊形ATPQ為平行四邊形,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計(jì)算$sin\frac{π}{6}+cos60°+tan\frac{π}{4}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.$C_3^2+C_4^2+C_5^2+C_6^2$=( 。
A.31B.32C.33D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}滿足,1+log3an=log3an+1(n∈N*),且a2+a4+a6=9,則數(shù)列l(wèi)og3(a5+a7+a9)的值是(  )
A.$-\frac{1}{5}$B.-5C.5D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊答案