A. | 都是增函數(shù) | B. | f(x)為減函數(shù),g(x)為增函數(shù) | ||
C. | 都是減函數(shù) | D. | f(x)為增函數(shù),g(x)為減函數(shù) |
分析 根據(jù)基本初等函數(shù)的單調(diào)性,判斷f(x)在區(qū)間(-∞,0)上是減函數(shù),
g(x)在區(qū)間(-∞,0)上是增函數(shù).
解答 解:函數(shù)$f(x)={(\frac{1}{2})^x}$在定義域R上是減函數(shù),
又g(x)=-|x|=$\left\{\begin{array}{l}{-x,x>0}\\{x,x≤0}\end{array}\right.$,
∴g(x)在區(qū)間(-∞,0)上是增函數(shù);
綜上,f(x)在區(qū)間(-∞,0)上是減函數(shù),
g(x)在區(qū)間(-∞,0)上是增函數(shù).
故選:B.
點評 本題考查了基本初等函數(shù)在某一區(qū)間上的單調(diào)性問題,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{13}}{2}$ | B. | $\frac{3}{2}$ | C. | 1+$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{7}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | -3或3 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
理科 | 文科 | |
男 | 13 | 10 |
女 | 7 | 20 |
P(x2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com