10.有一段演繹推理是這樣的:“若直線平行于平面,則直線平行于平面內(nèi)所有直線;已知直線b?平面α,直線a⊆平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋ā 。?table class="qanwser">A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

分析 根據(jù)題意,由直線與平面的位置關(guān)系,分析可得直線平行于平面,則直線可與平面內(nèi)的直線平行、異面、異面垂直,結(jié)合所給的演繹推理即可得答案.

解答 解:根據(jù)題意,若直線平行于平面,則直線可與平面內(nèi)的直線平行、異面、異面垂直,
則所給的演繹推理中的大前提錯(cuò)誤;
故選:A

點(diǎn)評(píng) 本題考查演繹推理的形式,在使用三段論推理證明中,如果命題是錯(cuò)誤的,則可能是“大前提”錯(cuò)誤,也可能是“小前提”錯(cuò)誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.雙曲線$C:{x^2}-\frac{y^2}{3}=1$的漸近線方程為y=$±\sqrt{3}x$;若雙曲線C的右焦點(diǎn)恰是拋物線N:y2=2px(p>0)的焦點(diǎn),則拋物線N的準(zhǔn)線方程為x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.輾轉(zhuǎn)相除法與更相減損術(shù)都是求兩個(gè)正整數(shù)的最大公因數(shù)的有效算法,用這兩種方法均可求得1254和1881的最大公約數(shù)為627.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.參數(shù)方程$\left\{\begin{array}{l}x=-4+3t\\ y=3-4t\end{array}\right.$(t 為參數(shù))所表示的普通方程是4x+3y+7=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.cos32°sin62°+sin212°sin28°=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=|x-3|-4(1≤x≤4)的值域是[-4,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a=2$\sqrt{3}$,b=2$\sqrt{2}$,c=$\sqrt{2}$+$\sqrt{6}$,證明:△ABC為銳角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意x∈R滿足f(x)+f′(x)>0,則下列結(jié)論正確的是( 。
A.2f(ln2)>3f(ln3)B.2f(ln2)<3f(ln3)C.2f(ln2)≥3f(ln3)D.2f(ln2)≤3f(ln3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.”公益行“是由某公益慈善基金發(fā)起并主辦的一款將用戶的運(yùn)動(dòng)數(shù)據(jù)轉(zhuǎn)化為公益步數(shù)的捐助公益項(xiàng)目的產(chǎn)品,捐助規(guī)則是滿10000步方可捐助且個(gè)人捐出10000步等價(jià)于捐出1元,現(xiàn)粗略統(tǒng)計(jì)該項(xiàng)目中其中200名的捐助情況表如下:
 捐款金額(單位:元)[0,50)[50,100)[100,150)[150,200)[200,250)[250,300)
 捐款人數(shù) 4 152 26 10 3 5
(Ⅰ)將捐款額在200元以上的人稱為“健康大使”,請(qǐng)?jiān)诂F(xiàn)有的“健康大使”中隨機(jī)抽取2人,求捐款額在[200,250)之間人數(shù)ξ的分布列;
(Ⅱ)為鼓勵(lì)更多的人來參加這項(xiàng)活動(dòng),該公司決定對(duì)捐款額在100元以上的用戶實(shí)行紅包獎(jiǎng)勵(lì),具體獎(jiǎng)勵(lì)規(guī)則如下:捐款額在[100,150)的獎(jiǎng)勵(lì)紅包5元,捐款額在[150,200)的獎(jiǎng)勵(lì)紅包8元,捐款額在[200,250)的獎(jiǎng)勵(lì)紅包10元,捐款額大于250的獎(jiǎng)勵(lì)紅包15元,已知該活動(dòng)參與人數(shù)有40萬人,將頻率視為概率,試估計(jì)該公司要準(zhǔn)備的紅包總金額.

查看答案和解析>>

同步練習(xí)冊(cè)答案