15.已知函數(shù)$f(x)=\left\{\begin{array}{l}3x-\frac{1}{2},x<1\\{2^x},x≥1\end{array}\right.$,則$f[f(\frac{1}{2})]$=2.

分析 由已知中$f(x)=\left\{\begin{array}{l}3x-\frac{1}{2},x<1\\{2^x},x≥1\end{array}\right.$,將x=$\frac{1}{2}$代入計(jì)算,可得答案.

解答 解:∵$f(x)=\left\{\begin{array}{l}3x-\frac{1}{2},x<1\\{2^x},x≥1\end{array}\right.$,
∴f($\frac{1}{2}$)=1,
$f[f(\frac{1}{2})]$=f(1)=2
故答案為:2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)求值,分段函數(shù)的應(yīng)用,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在透明塑料制成的長(zhǎng)方體ABCD-A1B1C1D1容器內(nèi)灌進(jìn)一些水,將容器底面一邊BC固定于地面上,再將容器傾斜,隨著傾斜度的不同,有下列四個(gè)說(shuō)法:
①有水的部分始終呈棱柱狀;
②水面四邊形EFGH的面積不改變;
③棱A1D1始終與水面EFGH平行;
④當(dāng)E∈AA1時(shí),AE+BF是定值.
其中正確說(shuō)法是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),x=-$\frac{π}{4}$為f(x)的零點(diǎn),x=$\frac{π}{4}$為y=f(x)圖象的對(duì)稱軸,且f(x)在($\frac{π}{18}$,$\frac{5π}{36}$)上單調(diào),則ω的最大值是( 。
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.小晶用圓、三角形、正方形按一定規(guī)律畫圖,前八個(gè)圖形如圖所示,則猜測(cè)第2017個(gè)圖形中共含有的正方形個(gè)數(shù)為336.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積等于(  )
A.84cm3B.92cm3C.98cm3D.100cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在平面直角坐標(biāo)系中,方程x2+y2=1經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}{{x}^{′}=2x}\\{{y}^{′}=3y}\end{array}\right.$后,得到的方程為(  )
A.$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=1B.2x2+3y2=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1D.4x2+9y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知△ABC中,AB=2,AC=3,tan∠BAC=2$\sqrt{2}$,D是BC邊上的點(diǎn),且BD=3CD,則$\overrightarrow{AD}•\overrightarrow{BC}$=$\frac{19}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求函數(shù)y=sin($\frac{1}{2}$x+$\frac{π}{3}$),x∈[-2π,2π]的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)f(x)=|x-3|+|x-4|.
(1)解不等式f(x)≤2;
(2)已知實(shí)數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案