7.已知f(x)=a+$\frac{a}{x^2}-\frac{5}{x}$,對?x∈(0,+∞),有f(x)≥0,則實(shí)數(shù)a的取值范圍是(  )
A.$[{\frac{5}{2},+∞})$B.$({\frac{5}{2},+∞})$C.$[{\frac{3}{2},+∞})$D.$({\frac{3}{2},+∞})$

分析 變形利用基本不等式的性質(zhì)即可得出.

解答 解:∵f(x)=a+$\frac{a}{x^2}-\frac{5}{x}$,對?x∈(0,+∞),有f(x)≥0,
∴a$≥\frac{5x}{{x}^{2}+1}$
∵$\frac{5x}{{x}^{2}+1}$=$\frac{5}{x+\frac{1}{x}}$≤$\frac{5}{2}$,當(dāng)且僅當(dāng)x=1時(shí)取等號.
∴$a≥\frac{5}{2}$.
故選:A.

點(diǎn)評 本題考查了恒成立問題的等價(jià)轉(zhuǎn)化方法、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式3x+2y-6≤0表示的區(qū)域是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,0<φ<π)的圖象如圖所示,則A=2,f(-$\frac{π}{3}$)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知l1的斜率是3,l2過點(diǎn)P(-5,4),Q(4,y),且l1⊥l2,則log9y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{{x}^{2}}{a+8}$+$\frac{{y}^{2}}{9}$=1的離心率e=$\frac{1}{2}$,則a的值為( 。
A.10或-$\frac{7}{2}$B.4或-$\frac{5}{4}$C.4或-$\frac{7}{2}$D.10或-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M,N滿足M∪N={1,2,3},M∩N={a},則( 。
A.a=1B.a=2C.a=3D.a∈M∪N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a∈R,a2-1+(a+1)i是純虛數(shù),其中i是虛數(shù)單位,則a=( 。
A.±1B.-1C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}為等差數(shù)列,滿足$\overrightarrow{OA}$=a3$\overrightarrow{OB}$+a2013$\overrightarrow{OC}$,其中A,B,C在一條直線上,O為直線AB外一點(diǎn),記數(shù)列{an}的前n項(xiàng)和為Sn,則S2015的值為( 。
A.$\frac{2015}{2}$B.2015C.2016D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17. 如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,點(diǎn)E是SB的中點(diǎn),∠SBC=45°,SC=SB=2$\sqrt{2}$,△ACD為等邊三角形.
(Ⅰ)求證:SD∥平面ACE;
(Ⅱ)求三棱錐S-ACE的體積.

查看答案和解析>>

同步練習(xí)冊答案