【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,右頂點(diǎn)為,上頂點(diǎn)為,已知

(1)求橢圓的離心率;

(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過(guò)點(diǎn),經(jīng)過(guò)原點(diǎn)的直線與該圓相切,求直線的斜率

【答案】(1);(2)

【解析】

試題分析:(1)設(shè)橢圓右焦點(diǎn)的坐標(biāo)為,由,可得,又,即可求解橢圓的離心率;(2)由(1)知,得到橢圓的方程為,設(shè)出點(diǎn),可得,進(jìn)而得到,由于點(diǎn)在橢圓上,聯(lián)立得到,解得,利用中點(diǎn)公式和兩點(diǎn)間的距離公式,利用直線與圓相切的性質(zhì)即可得出結(jié)論

試題解析:(1)設(shè)橢圓右焦點(diǎn)的坐標(biāo)為,由,可得

,則,所以橢圓的離心率

(2)由(1)知,故橢圓的方程為

設(shè),由,有,

由已知,有,即,又,故有

又因?yàn)辄c(diǎn)在橢圓上,所以

可得,而點(diǎn)不是橢圓的頂點(diǎn),故

代人,即點(diǎn)的坐標(biāo)為,設(shè)圓的圓心為

,進(jìn)而圓的半徑

設(shè)直線的斜率為,依題意,直線的方程與圓相切,可得,

,整理得,解得,

所以直線的斜率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

1寫(xiě)出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

2為曲線上的動(dòng)點(diǎn),求中點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保護(hù)環(huán)境,2015年合肥市勝利工廠在市政府的大力支持下,進(jìn)行技術(shù)改進(jìn):把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測(cè)算,該處理成本(萬(wàn)元)與處理量(噸)之間的函數(shù)關(guān)系可近似地表示為:且每處理一噸二氧化碳可得價(jià)值為20萬(wàn)元的某種化工產(chǎn)品.

(1)當(dāng)時(shí),判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤(rùn);如果不能獲利,則國(guó)家至少需要補(bǔ)貼多少萬(wàn)元,該工廠才不虧損?

(2)當(dāng)處理量為多少?lài)崟r(shí),每噸的平均處理成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程兩個(gè)不等的負(fù)根;方程無(wú)實(shí)根.若”為真,“假,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,點(diǎn)為坐標(biāo)原點(diǎn),若橢圓與曲線的交點(diǎn)分別為上),且兩點(diǎn)滿(mǎn)足

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓上異于其頂點(diǎn)的任一點(diǎn),作的兩條切線,切點(diǎn)分別為,且直線軸、軸上的截距分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】城市有一直角梯形綠,其中,km,km.現(xiàn)過(guò)邊界點(diǎn)鋪設(shè)一條直的灌溉水管,將綠分成面積相等的兩部分.

(1)如圖,的中點(diǎn),邊界上,求灌溉水管的長(zhǎng)度;

(2)如圖,邊界上,求灌溉水管的最短長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在冬季供暖時(shí)減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:)滿(mǎn)足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

(1)求的值及的表達(dá)式;

(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)滿(mǎn)足約束條件:

(1)請(qǐng)畫(huà)出可行域,并求的最小值;

(2)若取最大值的最優(yōu)解有無(wú)窮多個(gè),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位每天的用電量當(dāng)天最高氣溫之間具有線性相關(guān)關(guān)系,下表是該單位隨機(jī)統(tǒng)計(jì)4天的用電量與當(dāng)天最高氣溫的數(shù)據(jù).

最高氣溫()

26

29

31

34

用電量 (度)

22

26

34

38

根據(jù)表中數(shù)據(jù),求出回歸直線的方程(其中);

預(yù)測(cè)某天最高氣溫為33時(shí),該單位當(dāng)天的用電量(精確到1度).

查看答案和解析>>

同步練習(xí)冊(cè)答案