13.現(xiàn)對復(fù)方氨酚烷胺片(中文名:感康)進行深入臨床觀察,該藥物隨著進入病人體內(nèi)的時間與體溫的變化情況如圖所示,則當(dāng)時間x從20min到50min時,體溫y相對于時間x的平均變化率為( 。
A.0.05(℃/min)B.-0.05(℃/min)C.0.025(℃/min)D.-0.025(℃/min)

分析 利用兩個點的坐標,即可求出當(dāng)時間x從20min到50min時,體溫y相對于時間x的平均變化率.

解答 解:由題意,體溫y相對于時間x的平均變化率為$\frac{37-38.5}{50-20}$=-0.05(℃/min).
故選:B.

點評 本題考查平均變化率,考查學(xué)生的計算能力,正確運用函數(shù)的圖象是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.全稱命題“?a∈Z,a有正因數(shù)”的否定是?a∈Z,a沒有正因數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某酒店連續(xù)5個月的銷售額和利潤額資料如下表:
銷售額(x)/萬元35679
利潤額(y)/萬元23345
(Ⅰ)畫出銷售額和利潤額的散點圖;
(Ⅱ)如果y對x有線性相關(guān)關(guān)系,求回歸直線方程$\widehat{y}$=bx+a;
(Ⅲ)如果要求該酒店的利潤每月不能少于3.4萬元,請你估計一下,這個酒店每月的銷售額不得少于多少萬元?(參考公式b=$\frac{\sum _{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum _{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知在平面直角坐標系xOy中圓C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+3cosθ\\ y=1+3sinθ.\end{array}$(θ為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+$\frac{π}{6}$)=0,則圓C截直線l所得弦長為( 。
A.6B.2$\sqrt{2}$C.4$\sqrt{2}$D.$\sqrt{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.觀察如圖算式:
23=3+5;
33=7+9+11;
43=13+15+17+19;
53=21+23+25+27+29

203=a1+a2+a3+…,其中a1<a2<a3<…,那么a1=381.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.集合{x∈N|$\frac{3}{3-x}$∈N}的真子集有3個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且f(x)=x2-f′(1)lnx+f′(2),則f′(2)的值是$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.關(guān)于等差數(shù)列,有下列四個命題:
(1)若數(shù)列中有兩項是有理數(shù),則其余各項都是有理數(shù);
(2)等差數(shù)列的通項公式an是關(guān)于序號n的一次函數(shù);
(3)若數(shù)列{an}是等差數(shù)列,則數(shù)列{kan}(k為常數(shù))也是等差數(shù)列;
(4)若數(shù)列{an}是等差數(shù)列,則數(shù)列{an2}也是等差數(shù)列.
其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知定義在R上的函數(shù)f(x),對任意實數(shù)x滿足f(x+2)=-f(x-2),且當(dāng)x∈[0,8)時,f(x)=2x-10,則f(2015)=4.

查看答案和解析>>

同步練習(xí)冊答案