19.在曲線的切線y=x3+3x2+6x-10斜率中,最小值是3.

分析 先對函數(shù)f(x)進行求導(dǎo),然后求出導(dǎo)函數(shù)的最小值,其最小值即為斜率最小的切線方程的斜率.

解答 解:∵f(x)=x3+3x2+6x-10,
∴f'(x)=3x2+6x+6=3(x+1)2+3,
∵當x=-1時,f'(x)取到最小值3.
∴f(x)=x3+3x2+6x-10的切線中,斜率最小的切線方程的斜率為3.
故答案為:3

點評 本題主要考查導(dǎo)數(shù)的幾何意義和導(dǎo)數(shù)的運算.導(dǎo)數(shù)的幾何意義是函數(shù)在某點的導(dǎo)數(shù)值等于過該點的切線的斜率的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知sinα-cosα=$\frac{1}{3}$,則cos($\frac{π}{2}$-2α)=( 。
A.-$\frac{8}{9}$B.$\frac{2}{3}$C.$\frac{8}{9}$D.$\frac{\sqrt{17}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點A是拋物線x2=4y的對稱軸與準線的交點,點B為拋物線的焦點,P在拋物線上且當PA與拋物線相切時,點P恰好在以A、B為焦點的雙曲線上,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{2}+1$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{a }滿足a=$\frac{4}{3}$,an+1-1=an2-an (n∈N*),則m=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2017}}$的整數(shù)部分是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圖甲是函數(shù)f(x)的圖象,圖乙是由圖甲變換所得,則圖乙中的圖象對應(yīng)的函數(shù)可能是( 。
A.y=f(|x|)B.y=|f(x)|C.y=f(-|x|)D.y=-f(-|x|)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,空間四邊形的各邊和對角線長均相等,E 是 BC 的中點,那么(  )
A.$\overrightarrow{AE}$•$\overrightarrow{BC}$<$\overrightarrow{AE}$•$\overrightarrow{CD}$B.$\overrightarrow{AE}$•$\overrightarrow{BC}$=$\overrightarrow{AE}$•$\overrightarrow{CD}$
C.$\overrightarrow{AE}$•$\overrightarrow{BC}$>$\overrightarrow{AE}$•$\overrightarrow{CD}$D.$\overrightarrow{AE}$•$\overrightarrow{BC}$與 $\overrightarrow{AE}$•$\overrightarrow{CD}$不能比較大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=x+cosx在區(qū)間$[{0,\frac{π}{2}}]$上的最大值是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖是某算法流程圖,則算法運行后輸出的結(jié)果是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.是否存在實數(shù)a,使得函數(shù)y=sin2x+acosx在區(qū)間$[0,\frac{π}{2}]$上的最大值為1?若存在,求出相對應(yīng)的a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案