13.已知復(fù)數(shù)z1=-a2+2a+ai,z2=2xy+(x-y)i,其中a,x,y∈R,且z1=z2,求3x+y的取值范圍.

分析 根據(jù)z1=z2,可得-a2+2a=2xy,a=x-y,消去a可得:(x-1)2+(y+1)2=2.可得圓心C(1,-1),半徑r=$\sqrt{2}$.令3x+y=t,根據(jù)直線與圓的位置關(guān)系利用點(diǎn)到直線的距離公式即可得出.

解答 解:復(fù)數(shù)z1=-a2+2a+ai,z2=2xy+(x-y)i,其中a,x,y∈R,且z1=z2,
∴-a2+2a=2xy,a=x-y,
消去a可得:x2+y2-2x+2y=0,即(x-1)2+(y+1)2=2.可得圓心C(1,-1),半徑r=$\sqrt{2}$.
令3x+y=t,則$\frac{|3-1-t|}{\sqrt{10}}$≤$\sqrt{2}$,
解得:2-2$\sqrt{5}$≤t≤2+2$\sqrt{5}$.
∴3x+y的取值范圍是[2-2$\sqrt{5}$,2+2$\sqrt{5}$].

點(diǎn)評(píng) 本題考查了復(fù)數(shù)復(fù)數(shù)相等、直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知復(fù)數(shù)z滿足($\sqrt{3}$+3i)z=$\sqrt{3}$i,則z=( 。
A.$\frac{{\sqrt{3}}}{4}+\frac{1}{4}i$B.$\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$C.$\frac{{\sqrt{3}}}{4}-\frac{1}{4}i$D.$\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)f(x)=2x3+3ax2+3bx在x=1及x=2時(shí)取得極值,則b的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且$\frac{cosA}{cosB+cosC}$=$\frac{a}{b+c}$,則$\sqrt{3}$cosC-2sinB的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{n}{a_n}$,Sn是數(shù)列{bn}的前n項(xiàng)和,對(duì)任意正整數(shù)n不等式${S_n}+\frac{n}{{{2^{n+1}}}}>{(-1)^n}•a$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)$y=x+\frac{4}{x}(x<0)$的最大值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某統(tǒng)計(jì)部門(mén)就“A市汽車價(jià)格區(qū)間的購(gòu)買(mǎi)意愿”對(duì)100人進(jìn)行了問(wèn)卷調(diào)查,并將結(jié)果制作成頻率分布直方圖,如圖,已知樣本中數(shù)據(jù)在區(qū)間[10,15)上的人數(shù)與數(shù)據(jù)在區(qū)間[25,30)的人數(shù)之比為3:4.
(Ⅰ)求a,b的值.
(Ⅱ)估計(jì)A市汽車價(jià)格區(qū)間購(gòu)買(mǎi)意愿的中位數(shù);
(Ⅲ)按分層抽樣的方法在數(shù)據(jù)區(qū)間[10,15)和[20,25)上接受調(diào)查的市民中選取6人參加座談,再?gòu)倪@6人中隨機(jī)選取2人作為主要發(fā)言人,求在[10,15)的市民中至少有一人被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)全集為R,集合A={x|x2-16<0},B={x|-2<x≤6},則A∩(∁RB)等于( 。
A.(-4,0)B.(-4,-2]C.(-4,4)D.(-4,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=4cosωxsin({ωx+\frac{π}{6}})-2({ω>0})$,若函數(shù)相鄰最高點(diǎn)間的距離為π.
(1)求ω及f(x)的對(duì)稱中心;
(2)求f(x)在區(qū)間$[{-\frac{π}{6},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案