3.復(fù)數(shù)$\frac{1+i}{i}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)是(1,-1).

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)$\frac{1+i}{i}$=$\frac{-i(1+i)}{-i•i}$=1-i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)(1,-1).
故答案為:(1,-1).

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x(x+1)≤0},集合B={x|x>0},則A∪B=( 。
A.{x|x≥-1}B.{x|x>-1}C.{x|x≥0}D.{x|x>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞減,若實(shí)數(shù)a滿足f(3|2a+1|)>f(-$\sqrt{3}$),則a的取值范圍是( 。
A.(-∞,-$\frac{3}{4}$)∪(-$\frac{1}{4}$,+∞)B.(-∞,-$\frac{3}{4}$)C.(-$\frac{1}{4}$,+∞)D.(-$\frac{3}{4}$,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,N、S是球O直徑的兩個(gè)端點(diǎn),圓C1是經(jīng)過N和S點(diǎn)的大圓,圓C2和圓C3分別是所在平面與NS垂直的大圓和小圓,圓C1和C2交于點(diǎn)A、B,圓C1和C3交于點(diǎn)C、D,設(shè)a、b、c分別表示圓C1上劣弧CND的弧長、圓C2上半圓弧AB的弧長、圓C3上半圓弧CD的弧長,則a、b、c的大小關(guān)系為( 。
A.b>a=cB.b=c>aC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.10、(文)若關(guān)于x的不等式x3-3x+3+a≤0恒成立,其中-2≤x≤3,則實(shí)數(shù)a的最大值為( 。
A.1B.-1C.-5D.-21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某單位共有員工45人,其中男員工27人,女員工18人.上級部門為了對該單位員工的工作業(yè)績進(jìn)行評估,采用按性別分層抽樣的方法抽取5名員工進(jìn)行考核.
(Ⅰ)求抽取的5人中男、女員工的人數(shù)分別是多少;
(Ⅱ)考核前,評估小組從抽取的5名員工中,隨機(jī)選出3人進(jìn)行訪談.設(shè)選出的3人中男員工人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅲ)考核分筆試和答辯兩項(xiàng).5名員工的筆試成績分別為78,85,89,92,96;結(jié)合答辯情況,他們的考核成績分別為95,88,102,106,99.這5名員工筆試成績與考核成績的方差分別記為$s_1^2$,$s_2^2$,試比較$s_1^2$與$s_2^2$的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U={1,2,3,4},若A={1,3},則∁UA=(  )
A.{1,2}B.{1,4}C.{2,3}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2cos2x-1,x∈R.
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期;
(Ⅲ)設(shè)g(x)=f($\frac{π}{4}$-x)+$\sqrt{3}$cos2x,求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知,下列命題正確的是( )

A.若, 則

B.若,則

C.若,則

D.若,則

查看答案和解析>>

同步練習(xí)冊答案