【題目】如圖,在四棱錐中,,底面為直角梯形,,,為線段上一點(diǎn).

I)若,求證:平面;

II)若,,異面直線角,二面角的余弦值為,求的長(zhǎng)及直線與平面所成角的正弦值.

【答案】I)證明見解析;(II,直線與平面所成角的正弦值為.

【解析】

I)過點(diǎn),交于點(diǎn),連接,通過證明四邊形為平行四邊形得出,然后利用線面平行的判定定理可得出結(jié)論;

II)證明出平面,過點(diǎn)于點(diǎn),并以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法結(jié)合二面角的余弦值為求出的值,再利用空間向量法可求出直線與平面所成角的正弦值.

I)過點(diǎn),交于點(diǎn),連接,

,,,

,,所以,四邊形為平行四邊形,則,

平面平面,平面

II異面直線角,即

,平面,

,過點(diǎn)于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、軸建立如下圖所示的空間直角坐標(biāo)系,

設(shè),則、、,

,,,

設(shè)平面的法向量為,則

,則,,則,

同理可得平面的一個(gè)法向量為

由于二面角的余弦值為,

,解得,

所以,,易知平面的一個(gè)法向量為,

設(shè)直線與平面所成角為,則,

因此,直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)盒子中裝有6個(gè)紅球,4個(gè)白球,2個(gè)黑球,且規(guī)定:取出一個(gè)紅球得分,取出一個(gè)白球得分,取出一個(gè)黑球得分,其中,,都為正整數(shù).

1)當(dāng)時(shí),從該盒子中依次任。ㄓ蟹呕,且每球取到的機(jī)會(huì)均等)2個(gè)球,記隨機(jī)變量為取出此2球所得分?jǐn)?shù)之和,求的分布列;

2)當(dāng)時(shí),從該盒子中任。壳蛉〉降臋C(jī)會(huì)均等)1個(gè)球,記隨機(jī)變量為取出此球所得分?jǐn)?shù),若,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以為頂點(diǎn),母線長(zhǎng)為的圓錐中,底面圓的直徑長(zhǎng)為2,是圓所在平面內(nèi)一點(diǎn),且是圓的切線,連接交圓于點(diǎn),連接,.

1)求證:平面平面;

2)若的中點(diǎn),連接,,當(dāng)二面角的大小為時(shí),求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為、,拋物線的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn).

1)求橢圓的方程;

2)已知圓的切線(直線的斜率存在且不為零)與橢圓相交于兩點(diǎn),那么以為直徑的圓是否經(jīng)過定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖所示.

1)試比較甲、乙兩班分別抽取的這10名同學(xué)身高的中位數(shù)大小;

2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高176cm的同學(xué)被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)研究表明,人極易受情緒的影響,某選手參加74勝制的兵乒球比賽.

1)在不受情緒的影響下,該選手每局獲勝的概率為;但實(shí)際上,如果前一句獲勝的話,此選手該局獲勝的概率可提升到;而如果前一局失利的話,此選手該局獲勝的概率則降為,求該選手在前3局獲勝局?jǐn)?shù)的分布列及數(shù)學(xué)期望;

2)假設(shè)選手的三局比賽結(jié)果互不影響,且三局比賽獲勝的概率為,記為銳角的內(nèi)角,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在,滿足,則稱函數(shù)上的“平均值函數(shù)”,是它的一個(gè)均值點(diǎn).例如y=| x |上的“平均值函數(shù)”,0就是它的均值點(diǎn).給出以下命題:

①函數(shù)上的“平均值函數(shù)”.

②若上的“平均值函數(shù)”,則它的均值點(diǎn)x0

③若函數(shù)上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是

④若是區(qū)間[a.b] b>a.1)上的“平均值函數(shù)”,是它的一個(gè)均值點(diǎn),則

其中的真命題有_________.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1an1nN*).(其中e為自然對(duì)數(shù)的底數(shù),e2.71828…

1)證明:an1>annN*);

2)設(shè)bn1an,是否存在實(shí)數(shù)M>0,使得b1b2bnM對(duì)任意nN*成立?若存在,求出M的一個(gè)值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量(單位:億元)對(duì)年銷售額(單位:億元)的影響.該公司對(duì)歷史數(shù)據(jù)進(jìn)行對(duì)比分析,建立了兩個(gè)函數(shù)模型:①,②,其中均為常數(shù),為自然對(duì)數(shù)的底數(shù).

現(xiàn)該公司收集了近12年的年研發(fā)資金投入量和年銷售額的數(shù)據(jù),,并對(duì)這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.令,經(jīng)計(jì)算得如下數(shù)據(jù):

(1)設(shè)的相關(guān)系數(shù)為,的相關(guān)系數(shù)為,請(qǐng)從相關(guān)系數(shù)的角度,選擇一個(gè)擬合程度更好的模型;

(2)(i)根據(jù)(1的選擇及表中數(shù)據(jù),建立關(guān)于的回歸方程(系數(shù)精確到0.01);

(ii)若下一年銷售額需達(dá)到90億元,預(yù)測(cè)下一年的研發(fā)資金投入量是多少億元?

附:①相關(guān)系數(shù),回歸直線中斜率和截距的最小二乘估計(jì)公式分別為:,

② 參考數(shù)據(jù):,,

查看答案和解析>>

同步練習(xí)冊(cè)答案