【題目】已知數(shù)列{an}滿足:a1,an1nN*).(其中e為自然對數(shù)的底數(shù),e2.71828…

1)證明:an1>annN*);

2)設bn1an,是否存在實數(shù)M>0,使得b1b2bnM對任意nN*成立?若存在,求出M的一個值;若不存在,請說明理由.

【答案】1)證明見解析(2)不存在,理由見解析

【解析】

1)構(gòu)造函數(shù)證明即可得證;

2)先用數(shù)學歸納法證明,則bn1an,取,通過轉(zhuǎn)化即可證明.

考慮函數(shù),則

,由,

所以函數(shù)單調(diào)遞減,單調(diào)遞增,

所以,即,當且僅當時取得等號,

所以,當?shù)忍柍闪r,,但a1,

所以an1>annN*);

2)不存在,理由如下:

先用數(shù)學歸納法證明

n=1時,滿足題意;

假設當n=k時命題成立,即成立,

那么當n=k+1時,,

即當n=k+1時,命題也成立,

所以對于一切nN*,都有,

bn1an,取,

,

所以對于任意實數(shù)M0,取t>2M,且,

所以不存在滿足條件的M.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)若,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,底面為直角梯形,,,為線段上一點.

I)若,求證:平面

II)若,,異面直線角,二面角的余弦值為,求的長及直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個產(chǎn)品),已知其中有且只有一袋次品(10個產(chǎn)品均為次品)如果將5袋產(chǎn)品以15編號,第袋取出個產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號是2,此時的重量_________;若次品所在的袋子的編號是,此時的重量_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,在圓:.

1)求實數(shù)的值;

2)求過圓心且與直線平行的直線的方程;

3)過點作互相垂直的直線,,與圓交于兩點,與圓交于兩點,的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴重問題,為了了解強度(單位:分貝)與聲音能量(單位:)之間的關系,將測量得到的聲音強度和聲音能量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

表中,

1)根據(jù)表中數(shù)據(jù),求聲音強度關于聲音能量的回歸方程;

2)當聲音強度大于60分貝時屬于噪音,會產(chǎn)生噪聲污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是,且.已知點的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點是否受到噪聲污染的干擾,并說明理由.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知六個直角邊均為1的直角三角形圍成的兩個正六邊形,則該圖形繞著旋轉(zhuǎn)一周得到的幾何體的體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù)).

1)若函數(shù)存在極值點,求的取值范圍;

2)設,若不等式上恒成立,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某手機商城2018年華為、蘋果、三星三種品牌的手機各季度銷量的百分比堆積圖(如:第三季度華為銷量約占50%,蘋果銷量約占20%,三星銷量約占30%).根據(jù)該圖,以下結(jié)論中一定正確的是( 。

A.華為的全年銷量最大B.蘋果第二季度的銷量大于第三季度的銷量

C.華為銷量最大的是第四季度D.三星銷量最小的是第四季度

查看答案和解析>>

同步練習冊答案