4.函數(shù)f(x)的定義域?yàn)镽,f(-1)=2,對(duì)?x∈R,f'(x)>2,則f(log2x)<2log2x+4的解集為(0,$\frac{1}{2}$).

分析 設(shè)g(x)=f(x)-2x,由f′(x)>2,得到g′(x)大于0,得到g(x)為增函數(shù),將所求不等式變形后,利用g(x)為增函數(shù)求出x的范圍,即為所求不等式的解集.

解答 解:設(shè)g(x)=f(x)-2x,則g′(x)=f′(x)-2,
∵對(duì)?x∈R,f'(x)>2,
∴g′(x)>0.
∴g(x)在定義域內(nèi)單調(diào)遞增,
∴f(log2x)<2log2x+4?f(log2x)-2log2x<4,
∵g(-1)=f(-1)-2×(-1)=4,
即g(log2x)<g(-1),
∴l(xiāng)og2x<-1,得0<x<$\frac{1}{2}$,
則f(log2x)<2log2x+4的解集為(0,$\frac{1}{2}$).
故答案為:(0,$\frac{1}{2}$).

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,構(gòu)造函數(shù)是解答該題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)$\overline z=1+i$(i是虛數(shù)單位),則在復(fù)平面內(nèi),${z^2}+\frac{2}{z}$對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某體育彩票規(guī)定:從01到36個(gè)號(hào)中抽出7個(gè)號(hào)為一注,每注2元.某人想先選定吉利號(hào)18,然后再?gòu)?1到17個(gè)號(hào)中選出3個(gè)連續(xù)的號(hào),從19到29個(gè)號(hào)中選出2個(gè)連續(xù)的號(hào),從30到36個(gè)號(hào)中選出1個(gè)號(hào)組成一注.若這個(gè)人要把這種要求的號(hào)全買(mǎi),至少要花的錢(qián)數(shù)為( 。
A.2000元B.3200元C.1800元D.2100元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,D是BC上的點(diǎn),AD平分∠BAC,△ABD的面積是△ADC面積的兩倍,則$\frac{sin∠B}{sin∠C}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知全集U=R,非空集合$A=\left\{{x|\frac{x-2}{{x-({3a+1})}}<0}\right\},B=\left\{{x|\frac{{x-{a^2}-2}}{x-a}<0}\right\}$.
(1)當(dāng)$a=\frac{1}{2}$時(shí),求(∁UB)∩A;
(2)命題p:x∈A,命題q:x∈B,若p是q的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xlnx+2,g(x)=x2-mx.
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若存在$x∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知m,n,l是三條不同的直線(xiàn),α,β是兩個(gè)不同的平面,下列命題正確的是(  )
A.若m∥α,n⊥β,m⊥n,則α⊥βB.若m?α,n?α,n⊥l,則l⊥α
C.若m∥α,n⊥β,α⊥β,則m∥nD.若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的各項(xiàng)均為正數(shù),設(shè)其前n項(xiàng)和為Sn,且${a_n}=2\sqrt{S_n}-1$.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若數(shù)列${b_n}=\frac{{{a_n}+3}}{2}$,設(shè)Tn為數(shù)列$\{\frac{1}{{{b_n}{b_{n+1}}}}\}$的前n項(xiàng)的和,若Tn≤λbn+1對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若直線(xiàn)l與曲線(xiàn)M(x0,y0)滿(mǎn)足下列兩個(gè)條件:
(1)直線(xiàn)l在點(diǎn)M(x0,y0)處與曲線(xiàn)C相切;
(2)曲線(xiàn)C在點(diǎn)M附近位于直線(xiàn)l的兩側(cè),則稱(chēng)直線(xiàn)l在點(diǎn)M處“內(nèi)切”曲線(xiàn)C.
下列命題正確的是①②(寫(xiě)出所有正確命題的編號(hào))
①直線(xiàn)l:y=0在點(diǎn)M(0,0)處“內(nèi)切”曲線(xiàn)C:y=x3
②直線(xiàn)l:y=x在點(diǎn)M(0,0)處“內(nèi)切”曲線(xiàn)C:y=sinx
③直線(xiàn)l:y=x-1在點(diǎn)M(1,0)處“內(nèi)切”曲線(xiàn)C:y=lnx.

查看答案和解析>>

同步練習(xí)冊(cè)答案