14.在區(qū)間[-2,4]上隨機(jī)地取一個(gè)數(shù)x,使${a^2}+\frac{1}{{{a^2}+1}}≥|x|$恒成立的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 先根據(jù)基本不等式得到|x|≤1.再解絕對(duì)值不等式,再利用解得的區(qū)間長(zhǎng)度與區(qū)間[-2,4]的長(zhǎng)度求比值即得.

解答 解:a2+$\frac{1}{{a}^{2}+1}$=a2+1+$\frac{1}{{a}^{2}+1}$-1≥2$\sqrt{({a}^{2}+1)•\frac{1}{{a}^{2}+1}}$-1=2-1=1,當(dāng)且僅當(dāng)a=0時(shí)取等號(hào),
∵${a^2}+\frac{1}{{{a^2}+1}}≥|x|$恒成立,
∴|x|≤1,
解得-1≤x≤1,
故在區(qū)間[-2,4]上隨機(jī)地取一個(gè)數(shù)x,使${a^2}+\frac{1}{{{a^2}+1}}≥|x|$恒成立的概率是$\frac{1+1}{4+2}$=$\frac{1}{3}$,
故選:A

點(diǎn)評(píng) 本題主要考查了幾何概型,簡(jiǎn)單地說,如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡(jiǎn)稱為幾何概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.從甲、乙、丙、丁四個(gè)人中任選兩名志愿者,則甲被選中,乙沒有被選中的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.正項(xiàng)等比數(shù)列{an}中,公比q≠1,$\root{k}{{a}_{1}{a}_{2}…{a}_{k}}$=a11,則k=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖1,在高為2的梯形ABCD中,AB∥CD,AB=2,CD=5,過A、B分別作AE⊥CD,BF⊥CD,垂足分別為E、F.已知DE=1,將梯形ABCD沿AE、BF同側(cè)折起,得空間幾何體ADE-BCF,如圖2.

(Ⅰ)若AF⊥BD,證明:△BDE為直角三角形;
(Ⅱ)若DE∥CF,$CD=\sqrt{3}$,求平面ADC與平面ABFE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知偶函數(shù)f(x)滿足f(x)=3x-3(x≥0),則不等式xf(x)<0的解集為(0,1)∪(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=1,a2=4,且對(duì)任意m,n,p,q∈N*,若m+n=p+q,則有am+an=ap+aq
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為Sn,求證:$\frac{1}{4}$≤Sn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.過拋物線y2=4x焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,且A,C位于x軸同側(cè),若|AC|=2|AF|,則直線AB的斜率為(  )
A.±1B.$±\sqrt{3}$C.±2D.$±\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z滿足z(3+i)=10i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)為( 。
A.-1+3iB.1-3iC.1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a=ln$\frac{1}{2}$,b=($\frac{1}{3}$)0.8,c=2${\;}^{\frac{1}{3}}$,則( 。
A.a<c<bB.a<b<cC.c<a<bD.b<a<c

查看答案和解析>>

同步練習(xí)冊(cè)答案