7.在平面直角坐標(biāo)系xOy中,雙曲線$\frac{{x}^{2}}{3}$-y2=1的右準(zhǔn)線與它的兩條漸近線分別交于點P,Q,其焦點是F1,F(xiàn)2,則四邊形F1PF2Q的面積是$2\sqrt{3}$.

分析 求出雙曲線的準(zhǔn)線方程和漸近線方程,得到P,Q坐標(biāo),求出焦點坐標(biāo),然后求解四邊形的面積.

解答 解:雙曲線$\frac{{x}^{2}}{3}$-y2=1的右準(zhǔn)線:x=$\frac{3}{2}$,雙曲線漸近線方程為:y=±$\frac{\sqrt{3}}{3}$x,
所以P($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),Q($\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$),F(xiàn)1(-2,0).F2(2,0).
則四邊形F1PF2Q的面積是:$\frac{1}{2}×4×\sqrt{3}$=2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=pe-x+x+1(p∈R).
(Ⅰ)當(dāng)實數(shù)p=e時,求曲線y=f(x)在點x=1處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)p=1時,若直線y=mx+1與曲線y=f(x)沒有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù) f(x)=ex(ex-a)-a2x.
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a>0,b>0,a3+b3=2.證明:
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(3,-$\sqrt{3}$),x∈[0,π].
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求x的值;
(2)記f(x)=$\overrightarrow{a}$$•\overrightarrow$,求f(x)的最大值和最小值以及對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知一個口袋有m個白球,n個黑球(m,n∈N*,n≥2),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)的逐個取出,并放入如圖所示的編號為1,2,3,…,m+n的抽屜內(nèi),其中第k次取出的球放入編號為k的抽屜(k=1,2,3,…,m+n).
123m+n
(1)試求編號為2的抽屜內(nèi)放的是黑球的概率p;
(2)隨機(jī)變量x表示最后一個取出的黑球所在抽屜編號的倒數(shù),E(X)是X的數(shù)學(xué)期望,證明E(X)<$\frac{n}{(m+n)(n-1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點P在圓x2+y2=1上,點A的坐標(biāo)為(-2,0),O為原點,則$\overrightarrow{AO}$•$\overrightarrow{AP}$的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+$\sqrt{3}$asinC-b-2c=0.
(1)求A.
(2)若等差數(shù)列{an}的公差不為零,且a1cosA=-1,且a2、a4、a8成等比數(shù)列,設(shè){an}的前n項和為Tn,求數(shù)列{$\frac{1}{{T}_{n}}$}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案