A. | 1或-$\frac{1}{2}$ | B. | 1或-2 | C. | -1或-2 | D. | -2或-$\frac{1}{2}$ |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,得到直線y=ax+z斜率的變化,從而求出a的取值.
解答 解:作出不等式組$\left\{\begin{array}{l}{x-\frac{1}{2}y+1≥0}\\{x+y≤2}\\{x-2y≤2}\end{array}\right.$對應(yīng)的平面區(qū)域如圖:(陰影部分mBC).
由z=mx+y得y=-mx+z,即直線的截距最大,z也最大.
若m<0,目標(biāo)函數(shù)y=-mx+z的斜率k=-m>0,要使z=mx+y取得最大值的最優(yōu)解不唯一,
則直線z=mx+y與直線x-$\frac{1}{2}$y+1=0平行,此時m=-2,
若m>0,目標(biāo)函數(shù)y=-mx+z的斜率k=-m<0,要使z=y-mx取得最大值的最優(yōu)解不唯一,
則直線z=mx+y與直線x+y-2=0,平行,此時m=1,
綜上m=-2或m=1,
故選:B.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.注意要對a進行分類討論.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{1}{6}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com