7.已知x,y滿足條件$\left\{\begin{array}{l}{x-\frac{1}{2}y+1≥0}\\{x+y≤2}\\{x-2y≤2}\end{array}\right.$,若z=mx+y取得最大值的最優(yōu)解不唯一,則實數(shù)m的值為( 。
A.1或-$\frac{1}{2}$B.1或-2C.-1或-2D.-2或-$\frac{1}{2}$

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,得到直線y=ax+z斜率的變化,從而求出a的取值.

解答 解:作出不等式組$\left\{\begin{array}{l}{x-\frac{1}{2}y+1≥0}\\{x+y≤2}\\{x-2y≤2}\end{array}\right.$對應(yīng)的平面區(qū)域如圖:(陰影部分mBC).
由z=mx+y得y=-mx+z,即直線的截距最大,z也最大.
若m<0,目標(biāo)函數(shù)y=-mx+z的斜率k=-m>0,要使z=mx+y取得最大值的最優(yōu)解不唯一,
則直線z=mx+y與直線x-$\frac{1}{2}$y+1=0平行,此時m=-2,
若m>0,目標(biāo)函數(shù)y=-mx+z的斜率k=-m<0,要使z=y-mx取得最大值的最優(yōu)解不唯一,
則直線z=mx+y與直線x+y-2=0,平行,此時m=1,
綜上m=-2或m=1,
故選:B.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.注意要對a進行分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知扇形的圓心角為$\frac{2π}{3}$,半徑為6,則扇形的面積是12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若雙曲線x2+my2=1過點(-$\sqrt{2}$,2),則該雙曲線的虛軸長為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≤2}\\{y≤x}\end{array}\right.$,則x+2y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若α為銳角,且cosα=$\frac{\sqrt{65}}{65}$,則tan(α+$\frac{π}{4}$)=-$\frac{9}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線x+my-5=0與雙曲線x2-$\frac{{y}^{2}}{4}$=1的一條漸近線垂直,則正實數(shù)m=( 。
A.4B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.圓Γ的圓周上六個點將圓周等分,經(jīng)過這6個點中任意兩點做圓的弦,在所做的這些弦中任意取出兩條,則這兩條弦有公共點的概率為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,一顆豆子隨機扔到桌面上,則它落在非陰影區(qū)域的概率為( 。
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若(m$\overrightarrow{a}$+n$\overrightarrow$)∥($\overrightarrow{a}$-2$\overrightarrow$),則$\frac{m}{n}$等于(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案