分析 根據(jù)條件求出雙曲線的標(biāo)準(zhǔn)方程即可得到結(jié)論.
解答 解:∵雙曲線x2+my2=1過點(diǎn)(-$\sqrt{2}$,2),
∴2+4m=1,即4m=-1,
m=-$\frac{1}{4}$,
則雙曲線的標(biāo)準(zhǔn)范圍為x2-$\frac{{y}^{2}}{4}$=1,
則b=2,
即雙曲線的虛軸長2b=4,
故答案為:4.
點(diǎn)評 本題主要考查雙曲線的方程的應(yīng)用,利用點(diǎn)和雙曲線的關(guān)系求出雙曲線的標(biāo)準(zhǔn)方程是解決本題的關(guān)鍵.比較基礎(chǔ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或-$\frac{1}{2}$ | B. | 1或-2 | C. | -1或-2 | D. | -2或-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com