20.如圖,四棱錐P-ABCD的底面為平行四邊形,M為PC中點.
(1)求證:BC∥平面PAD;
(2)求證:AP∥平面MBD.

分析 (1)根據(jù)平行四邊形的性質(zhì)推知BC∥AD,結(jié)合直線與平面平行的判定證得結(jié)論;
(2)設AC∩BD=H,連接EH,由平行四邊形的性質(zhì)結(jié)合題意證出MH為△PAC中位線,從而得到MH∥PA,利用線面平行的判定定理,即可證出PA∥平面MBD.

解答 證明:(1)∵如圖,四棱錐P-ABCD的底面為平行四邊形,
∴BC∥AD,
又∵AD?平面PAD,BC?平面PAD,
∴BC∥平面PAD;
(2)設AC∩BD=H,連接MH,
∵H為平行四邊形ABCD對角線的交點,
∴H為AC中點,
又∵M為PC中點,∴MH為△PAC中位線,
可得MH∥PA,
MH?平面MBD,PA?平面MBD,
所以PA∥平面MBD.

點評 本題在特殊的四棱錐中證明線面平行和線面垂直,著重考查了空間的平行、垂直位置關(guān)系的判定與證明的知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知數(shù)列{an}的首項a1=9,其前n項和為Sn,且數(shù)列{Sn+$\frac{9}{2}$}是公比為3的等比數(shù)列.求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某城市城鎮(zhèn)化改革過程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的統(tǒng)計數(shù)據(jù):
年份20112012201320142015
居民生活用水量(萬噸)236246257276286
(Ⅰ)利用所給數(shù)據(jù)求年居民生活用水量與年份之間的回歸直線方程y=bx+a;
(Ⅱ)根據(jù)改革方案,預計在2020年底城鎮(zhèn)化改革結(jié)束,到時候居民的生活用水量將趨于穩(wěn)定,預計該城市2023年的居民生活用水量.
參考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,內(nèi)角A、B、C所對的邊為a、b、c,B=60°,a=4,其面積S=20$\sqrt{3}$,則c=( 。
A.15B.16C.20D.4$\sqrt{21}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某同學在研究性學習中,收集到某制藥廠今年前5各月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如表所示.
x(月份)12345
y(萬盒)55668
若x,y線性相關(guān),線性回歸方程為$\widehat{y}$=0.7x+$\widehat{a}$,估計該制藥廠6月份生產(chǎn)甲膠囊產(chǎn)量為( 。
A.8.1萬盒B.8.2萬盒C.8.9萬盒D.8.6萬盒

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.兩個相關(guān)變量滿足如表關(guān)系:
x23456
y25505664
根據(jù)表格已得回歸方程:$\stackrel{∧}{y}$=9.4x+9.2,表中有一數(shù)據(jù)模糊不清,請推算該數(shù)據(jù)是(  )
A.37B.38.5C.39D.40.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設等差數(shù)列{an}前n項和為Sn,且a5+a6=24,S11=143.
(1)求數(shù)列{an}的通項公式;
(2)記bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等差數(shù)列{an}滿足a1=9,a3=5.
(1)求等差數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn,及使得Sn取最大值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在周長為8的矩形ABCD中,E,F(xiàn)分別為BC,DA的中點.將矩形ABCD沿著線段EF折起,使得∠DFA=60°.設G為AF上一點,且滿足CF∥平面BDG.

(Ⅰ)求證:EF⊥DG;
(Ⅱ)求證:G為線段AF的中點;
(Ⅲ)求線段CG長度的最小值.

查看答案和解析>>

同步練習冊答案