1.如圖是從甲、乙兩品種的棉花中各抽測了10根棉花的纖維長度(單位:mm)所得數(shù)據(jù)如圖莖葉圖,記甲、乙兩品種棉花的纖維長度的平均值分別為${\overline x_甲}$與${\overline x_乙}$,標(biāo)準(zhǔn)差分別為s與s,則下列說法不正確的是( 。
A.${\overline x_甲}<{\overline x_乙}$B.s>s
C.乙棉花的中位數(shù)為325.5mmD.甲棉花的眾數(shù)為322mm

分析 根據(jù)莖葉圖中的數(shù)據(jù),得出甲、乙兩組數(shù)據(jù)的分布特征與數(shù)字特征,再判斷選項是否正確.

解答 解:由莖葉圖可知,甲組數(shù)據(jù)集中在300~331之間,且成雙峰分布,波動性大;
乙組數(shù)據(jù)集中在312~335之間,也成雙峰分布,波動性;
估計它們的平均數(shù)是$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,標(biāo)準(zhǔn)差是S>S;∴A、B正確;
又乙組數(shù)據(jù)按大小排列,中位數(shù)是$\frac{321+330}{2}$=325.5(mm),C正確;
甲組數(shù)據(jù)的眾數(shù)是302(mm)和322(mm),D錯誤.
故選:D.

點評 本題考查了莖葉圖以及數(shù)據(jù)的數(shù)字特征分析問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.運行右邊的程序框圖,輸出的結(jié)果是$\frac{20}{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的偶函數(shù)f(x)滿足f(x+2)-f(x)=0,且在[-1,0]上單調(diào)遞增,設(shè)a=f(log32),b=f(log${\;}_{\frac{1}{27}}$2),c=f($\frac{19}{12}$),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.?dāng)?shù)列{an}的前n項和為Sn,且Sn=n(n+1)(n∈N*). 
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:${a_n}=\frac{b_1}{2+1}+\frac{b_2}{{{2^2}+1}}+\frac{b_3}{{{2^3}+1}}+…+\frac{b_n}{{{2^n}+1}}$,求數(shù)列{bn}的通項公式;
(3)令${c_n}=\frac{{{a_n}{b_n}}}{4}$(n∈N*),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知P、M、N是單位圓上互不相同的三個點,且滿足|$\overrightarrow{PM}$|=|$\overrightarrow{PN}$|,則$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$\overrightarrow a=(-3,2,5)$,$\overrightarrow b=(1,x,-1)$,且$\overrightarrow a•\overrightarrow b=4$,則x的值是( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.隨著中國電子商務(wù)的發(fā)展和人們對網(wǎng)購的逐漸認識,網(wǎng)購鮮花速遞行業(yè)迅速興起.佳佳為祝福母親的生日,準(zhǔn)備在網(wǎng)上定制一束混合花束.客服為佳佳提供了兩個系列,如表:
粉色系列黃色系列
玫  瑰戴安娜、粉佳人、糖果、桃紅雪山假日公主、金輝、金香玉
康乃馨粉色、小桃紅、白色粉邊火焰、金毛、黃色
配  葉紅竹蕉、情人草、滿天星散尾葉、梔子葉、黃鶯、銀葉菊
佳佳要在兩個系列中選一個系列,再從中選擇2種玫瑰、1種康乃馨、2種配葉組成混合花束.請問佳佳可定制的混合花束一共有108種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知過點P作曲線y=x3的切線有且僅有兩條,則點P的坐標(biāo)可能是( 。
A.(0,0)B.(0,1)C.(1,1)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}前n項的和記為Sn,且a4=-5,a8=3.
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最小值及其相應(yīng)的n的值.

查看答案和解析>>

同步練習(xí)冊答案