15.函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+3),x<3}\\{lo{g}_{2}(x-1),x≥3}\end{array}\right.$,則f(-1)的值為( 。
A.0B.1C.2D.3

分析 由函數(shù)性質得f(-1)=f(2)=f(5),由此能求出結果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+3),x<3}\\{lo{g}_{2}(x-1),x≥3}\end{array}\right.$,
∴f(-1)=f(2)=f(5)=log24=2.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知定義在[-2,2]上的函數(shù)y=f(x)和 y=g(x),其圖象如圖所示:給出下列四個命題:
①方程f[g(x)]=0有且僅有6個根 
②方程f[f(x)]=0有且僅有5個根方程 
③g[g(x)]=0有且僅有3個根
④方程g[f(x)]=0有且僅有4個根
其中正確命題的序號( 。
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知tan(θ+$\frac{π}{2}$)=2,則sinθcosθ=-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若曲線$y=\sqrt{1-{x^2}}$和直線y=k(x-1)+1有兩個公共點,則實數(shù)k的取值范圍是$({0,\frac{1}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖ABCD為矩形,CDFE為梯形,CE⊥平面ABCD,O為BD的中點,AB=2EF
(Ⅰ)求證:OE∥平面ADF;
(Ⅱ)若ABCD為正方形,求證:平面ACE⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.復數(shù)z=5+3i的共軛復數(shù)對應的點所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.公元263年左右,我國數(shù)學家劉徽創(chuàng)立了“割圓術”,并利用“割圓術”得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的n值為(參考數(shù)據(jù):$\sqrt{3}≈1.732$,sin15°≈0.2500,sin7.5°≈0.2588)( 。
A.48B.36C.24D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,x<0\\{log_a}x(a>0,a≠1),x>0\end{array}\right.$的圖象上關于y軸對稱的點恰有9對,則實數(shù)a的取值范圍是$(\frac{{\sqrt{21}}}{21},\frac{{\sqrt{17}}}{17})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,an=$\left\{\begin{array}{l}{\frac{2}{3},n=1}\\{\frac{1}{{3}^{n}},n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案