分析 求出函數(shù)f(x)=sin($\frac{π}{2}$x)-1,(x<0)關(guān)于y軸對(duì)稱的解析式,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:若x>0,則-x<0,
∵x<0時(shí),f(x)=sin($\frac{π}{2}$x)-1,
∴f(-x)=sin(-$\frac{π}{2}$x)-1=-sin($\frac{π}{2}$x)-1,
則若f(x)=sin($\frac{π}{2}$x)-1,(x<0)關(guān)于y軸對(duì)稱,
則f(-x)=-sin($\frac{π}{2}$x)-1=f(x),
即y=-sin($\frac{π}{2}$x)-1,x>0,
設(shè)g(x)=-sin($\frac{π}{2}$x)-1,x>0
作出函數(shù)g(x)的圖象,
要使y=-sin($\frac{π}{2}$x)-1,x>0與f(x)=logax,x>0的圖象恰有9個(gè)交點(diǎn),
則0<a<1且滿足f(17)>g(17)=-2,f(21)<g(21)=-2,
即-2<loga17,loga21<-2,
即loga17>logaa-2,loga21<logaa-2,
則17<$\frac{1}{{a}^{2}}$,21>$\frac{1}{{a}^{2}}$,
解得$\frac{\sqrt{21}}{21}$<a<$\frac{\sqrt{17}}{17}$,
故答案為:$(\frac{{\sqrt{21}}}{21},\frac{{\sqrt{17}}}{17})$
點(diǎn)評(píng) 本題主要考查分段函數(shù)的應(yīng)用,作出函數(shù)關(guān)于y軸對(duì)稱的圖象,利用數(shù)形結(jié)合的思想是解決本題的關(guān)鍵,綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | {0,1,2,3} | D. | {-1,0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(0)+f(2)<2f(1) | B. | f(0)+f(2)≤2f(1) | C. | f(0)+f(2)≥2f(1) | D. | f(0)+f(2)>2f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com