5.已知a,b,c分別是△ABC中角A,B,C的對邊,且a2+c2-b2=ac.
(1)求角B的大。
(2)若c=3a,求sinA的值.

分析 (1)利用余弦定理表示出cosB,將已知等式代入求出cosB的值,即可確定出B的大小;
(2)把c=3a代入已知等式得到關系式,利用正弦定理化簡后將sinB的值代入計算即可求出sinA的值.

解答 解:(1)∵a2+c2-b2=ac,
∴由余弦定理,得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{1}{2}$,
∵0<B<π,∴B=$\frac{π}{3}$;
(2)將c=3a代入已知的等式,得b=$\sqrt{7}$a,
由正弦定理,得sinB=$\sqrt{7}$sinA,
∵B=$\frac{π}{3}$,
∴sinA=$\frac{\sqrt{21}}{14}$.

點評 此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}|lnx|,0<x≤e\\ f(2e-x),e<x<2e\end{array}$設方程f(x)=2-x+b(b∈R)的四個實根從小到大依次為x1,x2,x3,x4,對于滿足條件的任意一組實根,下列判斷中一定成立的是( 。
A.x1+x2=2B.e2<x3x4<(2e-1)2C.0<(2e-x3)(2e-x4)<1D.1<x1x2<e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為$4(\sqrt{2}+1)$,一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,E為AC中點,D為BC靠近C的三等分點,記$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}$=$\overrightarrow b$.
(1)用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{AD},\overrightarrow{BE}$;
(2)求BP:PE,并用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{CP}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設x、y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x≥y\\ 2x-y≤1\end{array}\right.$若目標函數(shù)為z=2x+4y,則z的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知 A={y|y>1},B={x|lnx≥0},則A∩B=( 。
A.{x|x≥1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知云臺山景區(qū)對擁擠等級與每日游客數(shù)量(單位:百人)的關系有如下規(guī)定:當n∈[0,100)時,擁擠等級為“優(yōu)”;當n∈[100,200)時,擁擠等級為“良”;當n∈[200,300)時,擁擠等級為“擁擠”;當n≥300時,擁擠等級為“嚴重擁擠”.該景區(qū)對9月份的游客數(shù)量作出如圖的統(tǒng)計數(shù)據(jù).
(1)下面是根據(jù)統(tǒng)計數(shù)據(jù)得到的頻率分布直方表,求出a,b,c的值,并估計該景區(qū)9月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
游客數(shù)量
(單位:百人)
[0,100)[100,200)[200,300)[300,400)
天數(shù)a104c
頻率b$\frac{1}{3}$$\frac{2}{15}$$\frac{1}{30}$
(2)某人選擇在9月1日至9月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.各項為整數(shù)的數(shù)列{an}的前n項和為Sn,且滿足Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N+).
(1)求an;
(2)設數(shù)列{an+bn}的首項為1,公比為q的等比數(shù)列,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知復數(shù)z滿足($\sqrt{3}$+3i)z=3i,則|z|=( 。
A.$\sqrt{2}$B.1C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習冊答案