A. | 5 | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
分析 根據(jù)△ABC中$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2,得ca•cosB=2①;
由|$\overrightarrow{BA}$-$\overrightarrow{BC}$|=$\sqrt{2}$得b=$\sqrt{2}$,再由余弦定理得出c2+a2的值;
根據(jù)同角的三角函數(shù)關(guān)系和基本不等式即可求出S△ABC的最大值.
解答 解:△ABC中,A、B、C所對(duì)邊分別為a,b,c,
由$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2,得ca•cos(π-B)=-2,
∴ca•cosB=2①;
由|$\overrightarrow{BA}$-$\overrightarrow{BC}$|=$\sqrt{2}$,得b=$\sqrt{2}$,
∴b2=c2+a2-2ca•cosB=2②;
∴c2+a2=6,
∴S△ABC=$\frac{1}{2}$acsinB
=$\frac{1}{2}$ac$\sqrt{1{-cos}^{2}B}$
=$\frac{1}{2}$ac$\sqrt{1-\frac{4}{{(ac)}^{2}}}$
=$\frac{1}{2}$$\sqrt{{(ac)}^{2}-4}$;
由a2+c2=6,得a2+c2≥2ac,ac≤3,當(dāng)且僅當(dāng)a=c=$\sqrt{3}$時(shí)取等號(hào),
所以S△ABC≤$\frac{1}{2}$$\sqrt{{3}^{2}-4}$=$\frac{\sqrt{5}}{2}$,
即△ABC面積的最大值為$\frac{\sqrt{5}}{2}$.
故選:D.
點(diǎn)評(píng) 本題考查平面向量數(shù)量積的運(yùn)算、三角形面積公式不等式求最值等知識(shí),是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{a>0}\\{4^{2}-\frac{4}{3}ac<0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a>0}\\{4^{2}-\frac{4}{3}ac>0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{a<0}\\{4^{2}-\frac{4}{3}ac>0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{a<0}\\{4^{2}-\frac{4}{3}ac<0}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$$\overrightarrow{EF}$+$\frac{1}{2}$$\overrightarrow{EG}$+$\frac{1}{2}$$\overrightarrow{EH}$ | B. | $\frac{1}{5}$$\overrightarrow{EF}$+$\frac{1}{5}$$\overrightarrow{EG}$+$\frac{1}{5}$$\overrightarrow{EH}$ | C. | $\frac{1}{4}$$\overrightarrow{EF}$+$\frac{1}{4}$$\overrightarrow{EG}$+$\frac{1}{4}$$\overrightarrow{EH}$ | D. | $\frac{1}{3}$$\overrightarrow{EF}$+$\frac{1}{3}$$\overrightarrow{EG}$+$\frac{1}{3}$$\overrightarrow{EH}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com