1.復(fù)數(shù)$\frac{2-3i}{3+2i}$+z對應(yīng)的點(diǎn)的坐標(biāo)為(2,-2),則z在復(fù)數(shù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 化簡復(fù)數(shù)為a+bi的形式,即可判斷對應(yīng)點(diǎn)所在象限.

解答 解:設(shè)z=x+yi,
$\frac{2-3i}{3+2i}$+z=$\frac{(2-3i)^{2}}{(3+2i)(3-2i)}$+x+yi=$\frac{-5-12i}{13}$+x+yi=$\frac{-5}{13}$+x+(y-$\frac{12}{13}$)i,
∴x-$\frac{5}{13}$=2,y-$\frac{12}{13}$=-2,
∴x=$\frac{31}{13}$,y=-$\frac{14}{13}$,
∴z在復(fù)數(shù)平面內(nèi)對應(yīng)的點(diǎn)為($\frac{31}{13}$,-$\frac{14}{13}$),
故選:D.

點(diǎn)評 本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的幾何意義,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知F為拋物線4y2=x的焦點(diǎn),點(diǎn)A,B都是拋物線上的點(diǎn)且位于x軸的兩側(cè),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=15(O為原點(diǎn)),則△ABO和△AFO的面積之和的最小值為(  )
A.$\frac{1}{8}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{65}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}滿足:${a_1}=2\;,\;{a_{n+1}}=1-\frac{1}{a_n}$,設(shè)數(shù)列{an}的前n項和為Sn,則S2017=(  )
A.1007B.1008C.1009.5D.1010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=lnx-\frac{x+a}{x}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:x>0時,$\frac{1}{x+1}<\frac{ln(x+1)}{x}<1$;
(Ⅲ)比較三個數(shù):${(\frac{100}{99})^{100}}$,${(\frac{101}{100})^{100}}$,e的大。╡為自然對數(shù)的底數(shù)),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{-x}+a,x≤0}\\{(x-1)^{3}+1,x>0}\end{array}$,且?x0∈[2,+∞)使得f(-x0)=f(x0),若對任意的x∈R,f(x)>b恒成立,則實數(shù)b的取值范圍為( 。
A.(-∞,0)B.(-∞,0]C.(-∞,a)D.(-∞,a]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線x+y+$\sqrt{2}$=0相切.A,B是橢圓C的右頂點(diǎn)與上頂點(diǎn),直線y=kx(k>0)與橢圓相交于E,F(xiàn)兩點(diǎn).
(1)求橢圓C的方程;
(2)當(dāng)四邊形AEBF面積取最大值時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正項等差數(shù)列{an}的前n項和為Sn,S10=40,則a3•a8的最大值為( 。
A.14B.16C.24D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.拋物線x2=4y的焦點(diǎn)為F,過F作斜率為$\frac{{\sqrt{3}}}{3}$的直線l與拋物線在y軸右側(cè)的部分相交于點(diǎn)A,過A作拋物線準(zhǔn)線的垂線,垂足為H,則△AHF的面積是( 。
A.4B.$3\sqrt{3}$C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P,Q,若∠PAQ=$\frac{π}{3}$,且$|{\overrightarrow{OQ}}|=3|{\overrightarrow{OP}}$|,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案