17.設(shè)集合A={x|x2-2x-3<0},B={x|x>0},則A∪B=(  )
A.(-1,+∞)B.(-∞,3)C.(0,3)D.(-1,3)

分析 由二次不等式的解法,化簡集合A,再由并集的定義,即可得到所求集合.

解答 解:集合A={x|x2-2x-3<0}={x|-1<x<3},
B={x|x>0},
則A∪B={x|-1<x<3}∪{x|x>0}={x|x>-1}=(-1,+∞),
故選:A.

點(diǎn)評(píng) 本題考查集合的并集運(yùn)算,考查二次不等式的解法,運(yùn)用定義法是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若2sinα+cosα=0,則$\frac{4sinα-3cosα}{2sinα+5cosα}$=$-\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖.四棱錐P-ABCD中.平而PAD⊥平而ABCD,底而ABCD為梯形.AB∥CD,AB=
2DC=2$\sqrt{3}$,AC∩BD=F,且△PAD與△ABD均為正三角形,G為△PAD的重心.
(1)求證:GF∥平面PDC;
(2)求平面AGC與平面PAB所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會(huì)”等五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中沒有人參加“演講團(tuán)”的不同參加方法數(shù)為( 。
A.3600B.1080C.1440D.2520

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\frac{2}{x-lnx-1}$,則y=f(x)的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知i是虛數(shù)單位,則z=$\frac{3+2i}{i}$+$\frac{2+i}{1-2i}$i(i為虛數(shù)單位)所對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={0,1,2},B={y|y=2x},則A∩B=( 。
A.{0,1,2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的圖象如圖所示,將f(x)的圖象向右平移m個(gè)單位得到g(x)的圖象關(guān)于y軸對(duì)稱,則正數(shù)m的最小值為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的極值,并證明f(x)>g(x)+$\frac{1}{2}$,x∈(0,e]恒成立;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值為3?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案