15.設(shè)全集U=R,集合$A=\left\{{x|y={{log}_2}x}\right\},B=\left\{{x|{x^2}-1<0}\right\}$,則(∁UA)∩B={x|-1<x≤0}.

分析 根據(jù)補(bǔ)集與交集的定義,計(jì)算即可.

解答 解:全集U=R,集合A={x|x>0},
B={x|-1<x<1},
∴∁UA={x|x≤0},
∴(∁UA)∩B={x|-1<x≤0}.
故答案為:{x|-1<x≤0}.

點(diǎn)評 本題考查了解不等式與集合的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$x2-x+alnx,a∈R.
(Ⅰ)若函數(shù)f(x)為定義域上的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)0<α<$\frac{2}{9}$時(shí),函數(shù)f(x)的兩個(gè)極值點(diǎn)為x1,x2,且x1<x2.證明:$\frac{f({x}_{1})}{{x}_{2}}$>-$\frac{5}{12}$-$\frac{1}{3}$ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(sinx)=cos2x-1,則f(cos15°)=( 。
A.$-\frac{1}{2}$B.$-\frac{3}{2}$C.$-\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列函數(shù)的值.
(1)求y=(x+1)(x+2)(x+3)的導(dǎo)數(shù)
(2)${∫}_{0}^{1}$(x-x2)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公司在新年晚會上舉行抽獎活動,有甲,乙兩個(gè)抽獎方案供員工選擇.
方案甲:員工最多有兩次抽獎機(jī)會,每次抽獎的中獎率均為$\frac{4}{5}$,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則不能獲得獎金.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為$\frac{2}{5}$,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,哪個(gè)方案更劃算?
(Ⅲ)已知公司共有100人在活動中選擇了方案甲,試估計(jì)這些員工活動結(jié)束后沒有獲獎的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.定義在(-1,1]上的函數(shù)f(x)滿足f(x)+1=$\frac{1}{f(x+1)}$,當(dāng)x∈[0,1]時(shí),f(x)=x,若函數(shù)g(x)=|f(x)-$\frac{1}{2}$|-mx-m+1在(-1,1]內(nèi)恰有3個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.($\frac{3}{2}$,+∞)B.($\frac{3}{2}$,$\frac{25}{8}$)C.($\frac{3}{2}$,$\frac{25}{16}$)D.($\frac{2}{3}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若將函數(shù)y=sin(2x+φ)(0<φ<π)圖象向右平移$\frac{π}{8}$個(gè)單位長度后關(guān)于y軸對稱,則φ的值為( 。
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{3π}{4}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=|x|(x2-3t)(t∈R).
(1)當(dāng)t=1時(shí),求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)g(x)=|f(x)|(x∈[0,2]),求g(x)的最大值F(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)若不等式|x-m|<1成立的充分不必要條件為$\frac{1}{3}$<x<$\frac{1}{2}$求實(shí)數(shù)m的取值范圍;
(Ⅱ)關(guān)于x的不等式|x-3|+|x-5|<a的解集不是空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案