分析 (Ⅰ)由正弦定理和余弦定理,即可求出cosB以及B的值;
(Ⅱ)結(jié)合題意畫出圖形,根據(jù)圖形利用余弦定理和基本不等式,即可求出2a+c的值.
解答 解:(Ⅰ)△ABC中,$\frac{sinC}{sinA-sinB}$=$\frac{a+b}{a-c}$,
∴$\frac{c}{a-b}$=$\frac{a+b}{a-c}$,
∴ac-c2=a2-b2,
∴ac=a2+c2-b2,
∴cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$;
又B∈(0,π),
∴B=$\frac{π}{3}$;
(Ⅱ)如圖所示,
點(diǎn)D滿足$\overrightarrow{BD}$=2$\overrightarrow{BC}$,∴BC=CD;
又線段AD=3,
∴AD2=c2+4a2-2•c•2acos$\frac{π}{3}$=c2+4a2-2ac=9,
∴c2+4a2=9+2ac;
又c2+4a2≥2c•2a,
∴4ac≤9+2ac,
∴2ac≤9;
∴(2a+c)2=4a2+4ac+c2=9+6ac≤9+3×9=36,
∴2a+c≤6,
即2a+c的最大值為6.
點(diǎn)評(píng) 本題考查了正弦定理和余弦定理的應(yīng)用問題,也考查了基本不等式的應(yīng)用問題,是綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{(\sqrt{5}-1)π}}{2}+2$ | B. | $\frac{{(\sqrt{5}+1)π}}{2}+2$ | C. | $\frac{π}{2}+3$ | D. | $\frac{{\sqrt{5}}}{2}π+2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{5π}{6}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -200 | B. | -100 | C. | -50 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “p∨q”為假命題 | B. | “p∧q”為假命題 | C. | “¬p”為真命題 | D. | “¬q”為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{14}{3}$ | B. | $\frac{19}{3}$ | C. | 4 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com