【題目】已知是橢圓的左焦點,O為坐標(biāo)原點,為橢圓上的點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點都在橢圓上,且中點在線段(不包括端點)上,求面積的最大值,及此時直線的方程.

【答案】1;(2面積的最大值為1,此時直線的方程為

【解析】

1)依題意可得,求出,即可得到橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),,易知直線AB的斜率存在,設(shè)為k,將兩點坐標(biāo)分別代入橢圓方程,所得兩式相減,可得到,進(jìn)而可求出k的值,從而設(shè)出直線的方程,并與橢圓方程聯(lián)立,得到關(guān)于的一元二次方程,分別表示出弦長及點O到直線AB的距離,從而可求得面積的表達(dá)式,進(jìn)而求出最大值,并求得此時直線的方程.

1)依題意可得,

,解得,則

故橢圓的標(biāo)準(zhǔn)方程為;

2)設(shè),,

依題意可知,直線AB的斜率存在,設(shè)為k,

,所以,

,

,,,所以,

又直線OPM在線段OP上,所以,所以

設(shè)直線AB的方程為,

聯(lián)立方程,可得

,,

,即,解得,

所以,,

又點O到直線AB的距離,

所以

當(dāng)且僅當(dāng),即舍去時,等號成立,此時直線方程為.

所以面積的最大值為1,此時直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,是橢圓上關(guān)于原點對稱的兩個動點,當(dāng)點的坐標(biāo)為時,的周長恰為

(1)求橢圓的方程;

(2)過點作直線交橢圓于兩點,且 ,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,的中點.

(I)若上的一點,且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線所成的角為45°,求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的極值點.

(Ⅰ)求實數(shù)的值;

(Ⅱ)求證:函數(shù)存在唯一的極小值點,且.

(參考數(shù)據(jù):,,其中為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中,點P在正方體的對角線AB上,點Q在正方體的棱CD上,若P為動點,Q為動點,則PQ的最小值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為).

(1)寫出直線的直角坐標(biāo)方程與曲線的普通方程;

(2)平移直線使其經(jīng)過曲線的焦點,求平移后的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),,為曲線上的一動點.

(I)求動點對應(yīng)的參數(shù)從變動到時,線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司代理銷售某種品牌小商品,該產(chǎn)品進(jìn)價為5元/件,銷售時還需交納品牌使用費(fèi)3元/件,售價為元/件,其中,且.根據(jù)市場調(diào)查,當(dāng),且時,每月的銷售量(萬件)與成正比;當(dāng),且時,每月的銷售量(萬件)與成反比.已知售價為15元/件時,月銷售量為9萬件.

(1)求該公司的月利潤(萬件)與每件產(chǎn)品的售價(元)的函數(shù)關(guān)系式;

(2)當(dāng)每件產(chǎn)品的售價為多少元時,該公司的月利潤最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案