分析 由約束條件作出可行域,數(shù)形結(jié)合可知,可行域內(nèi)的動點到直線y=-2x+2的最短距離為A(2,0)到直線2x+y-2=0的距離,再由點到直線的距離公式得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{2x+y-4≥0,}&{\;}\\{x-y-2≤0,}&{\;}\\{y-3≤0,}&{\;}\end{array}\right.$作出可行域如圖:
由圖可知,可行域內(nèi)的動點到直線y=-2x+2的最短距離為A(2,0)到直線2x+y-2=0的距離,等于$\frac{|4-2|}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$.
故答案為:$\frac{2\sqrt{5}}{5}$.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±$\sqrt{2}$x | B. | y=±2x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\frac{1}{2}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com