20.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow$|=$\sqrt{2}$.

分析 根據(jù)向量的數(shù)量積公式計算即可.

解答 解:∵向量$\overrightarrow{a}$=(1,-1)=$\sqrt{2}$,$\overrightarrow{a}$•$\overrightarrow$=0,
∴|$\overrightarrow{a}$-$\overrightarrow$|2=|$\overrightarrow{a}$|2-2$\overrightarrow{a}•\overrightarrow$+|$\overrightarrow$|2=4,
∴|$\overrightarrow$|2=2,
∴|$\overrightarrow$|=$\sqrt{2}$,
故答案為:$\sqrt{2}$

點評 本題考查了向量的數(shù)量積公式和向量的模,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=f(2x-1)是偶函數(shù),則函數(shù)y=f(2x+1)的對稱軸是( 。
A.x=-1B.x=0C.$x=\frac{1}{2}$D.$x=-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設集合M={x|x2+3x+2>0},集合N={-2,-1,0,1,2},則M∩N=( 。
A.{-2,-1}B.{0,1,2}C.{-1,0,1,2}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知f(x)為奇函數(shù),函數(shù)f(x)與g(x)的圖象關于直線y=x+1對稱,若g(1)=4,則f(-3)=( 。
A.2B.-2C.-1D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設集合A={x∈Z|x2-2x-3≤0},B={0,1},則∁AB=( 。
A.{-3,-2,-1}B.{-1,2,3}C.{-1,0,1,2,3}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.有兩張卡片,一張的正反面分別畫著老鼠和小雞,另一張的正反面分別畫著老鷹和蛇,現(xiàn)在有兩個小孩隨機地將兩張卡片排在一起放在桌面上,不考慮順序,則向上的圖案是老鷹和小雞的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.當x>0時,函數(shù)f(x)=(aex+b)(x-2)單調遞增,且函數(shù)y=f(x-1)的圖象關于直線x=1對稱,則使得f(2-m)>0成立的m的取值范圍是( 。
A.{m|m<-2或m>2}B.{m|-2<m<2}C.{m|m<0或m>4}D.{m|0<m<4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列選項中,說法正確的是( 。
A.命題“?x0∈R,x02-x0≤0”的否定為“?x∈R,x2-x>0”
B.若非零向量$\overrightarrow a$、$\overrightarrow b$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則$\overrightarrow a$與$\overrightarrow b$共線
C.命題“在△ABC中,A>30°,則sinA>$\frac{1}{2}$”的逆否命題為真命題
D.設{an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.拋物線y2=4x上一點A到它焦點F的距離為4,則直線AF的斜率為$±\sqrt{3}$.

查看答案和解析>>

同步練習冊答案